Reasoning on Financial Knowledge Graphs: The Case of Company Networks

Posted on: Fri, 06/05/2020 - 10:53 By: valentina.janev

The initial release of KGs was started on an industry scale by Google and further continued with the publication of other large-scale KGs such as Facebook, Microsoft, Amazon, DBpedia, Wikidata and many more. As an influence of the increasing hype in KG and advanced AI-based services, every individual company or organization is adapting to KG. The KG technology has immediately reached industry, and big companies have started to build their own graphs such as the industrial Knowledge Graph at Siemens.

Embedding-based Recommendations on Scholarly Knowledge Graphs

Posted on: Tue, 06/02/2020 - 09:37 By: valentina.janev

The increasing availability of scholarly metadata in the form of Knowledge Graphs (KG) offers opportunities for studying the structure of scholarly communication and the evolution of science. Such KGs build the foundation for knowledge-driven tasks e.g., link discovery, prediction and entity classification which allows to provide recommendation services. Knowledge graph embedding (KGE) models have been investigated for such knowledge-driven tasks in different application domains.

Scalable Knowledge Graph Processing using SANSA

Posted on: Fri, 05/29/2020 - 10:55 By: valentina.janev

The size and number of knowledge graphs have increased tremendously in recent years. In the meantime, the distributed data processing technologies have also advanced to deal with big data and large scale knowledge graphs. This lecture introduces Scalable Semantic Analytics Stack (SANSA), which addresses the challenge of dealing with large scale RDF data and provides a uni ed framework for applications like link prediction, knowledge base completion, querying, and reasoning.

Reasoning in Knowledge Graphs: An Embeddings Spotlight

Posted on: Fri, 05/29/2020 - 10:38 By: valentina.janev

In this lecture, we introduce the aspect of reasoning in Knowledge Graphs. We give a broad overview focusing on the multitude of reasoning techniques: spanning logic-based reasoning, embedding-based reasoning, neural network-based reasoning, etc. In particular, we discuss three dimensions of reasoning in Knowledge Graphs. Complementing these dimensions, we will structure our exploration based on a pragmatic view of reasoning tasks and families of reasoning tasks: reasoning for knowledge integration, knowledge discovery and application services.
 

Survey on Big Data Applications

Posted on: Wed, 04/01/2020 - 21:11 By: valentina.janev

The goal of this chapter is to shed light on different types of big data applications needed in various industries including healthcare, transportation, energy, banking and insurance, digital media and e-commerce, environment, safety and security, telecommunications, and manufacturing. In response to the problems of analyzing large-scale data, different tools, techniques, and technologies have bee developed and are available for experimentation.

Context-Based Entity Matching for Big Data

Posted on: Wed, 04/01/2020 - 20:55 By: valentina.janev

In the Big Data era, where variety is the most dominant dimension, the RDF data model enables the creation and integration of actionable knowledge from heterogeneous data sources. However, the RDF data model allows for describing entities under various contexts, e.g., people can be described from its demographic context, but as well from their professional contexts. Context-aware description poses challenges during entity matching of RDF datasets the match might not be valid in every context.

Big Data Ecosystem

Posted on: Wed, 04/01/2020 - 20:44 By: valentina.janev

The rapid development of digital technologies, IoT products and connectivity platforms, social networking applications, video, audio and geolocation services has created opportunities for collecting/accumulating a large amount of data. While in the past corporations used to deal with static, centrally stored data collected from various sources, with the birth of the web and cloud services, cloud computing is rapidly overtaking the traditional in-house system as a reliable, scalable and cost-efective IT solution.

Open and Big Data – Utilization Perspective

Posted on: Wed, 04/01/2020 - 20:09 By: valentina.janev

Although each government in Europe with their public administration services can be treated as a big data ecosystem, the opportunities of interconnecting, integrating and processing the data on EU level presents a real challenge nowadays. Discussions on public benefit of integrating and opening the data can be found in our previous work, where we examine the use of Linked Data Approach in European e-Government Systems

Subscribe to 2020