Embedding-based Recommendations on Scholarly Knowledge Graphs

Posted on: Tue, 06/02/2020 - 09:37 By: valentina.janev

The increasing availability of scholarly metadata in the form of Knowledge Graphs (KG) offers opportunities for studying the structure of scholarly communication and the evolution of science. Such KGs build the foundation for knowledge-driven tasks e.g., link discovery, prediction and entity classification which allows to provide recommendation services. Knowledge graph embedding (KGE) models have been investigated for such knowledge-driven tasks in different application domains.

Reasoning in Knowledge Graphs: An Embeddings Spotlight

Posted on: Fri, 05/29/2020 - 10:38 By: valentina.janev

In this lecture, we introduce the aspect of reasoning in Knowledge Graphs. We give a broad overview focusing on the multitude of reasoning techniques: spanning logic-based reasoning, embedding-based reasoning, neural network-based reasoning, etc. In particular, we discuss three dimensions of reasoning in Knowledge Graphs. Complementing these dimensions, we will structure our exploration based on a pragmatic view of reasoning tasks and families of reasoning tasks: reasoning for knowledge integration, knowledge discovery and application services.

Subscribe to Video