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ABSTRACT
Data in the energy domain grows at unprecedented rates and is usu-
ally generated by heterogeneous energy systems. Despite the great
potential that big data-driven technologies can bring to the energy
sector, general adoption is still lagging. Several challenges related
to controlled data exchange and data integration are still not wholly
achieved. As a result, fragmented applications are developed against
energy data silos, and data exchange is limited to few applications.
In this paper, we analyze the challenges and requirements related to
energy-related data applications. We also evaluate the use of Energy
Data Ecosystems (EDEs) as data-driven infrastructures to overcome
the current limitations of fragmented energy applications. EDEs are
inspired by the International Data Space (IDS) initiative launched in
Germany at the end of 2014 with an overall objective to take both the
development and use of the IDS reference architecture model to a
European/global level. The reference architecture model consists of
four architectures related to business, security, data and service, and
software aspects. This paper illustrates the applicability of EDEs and
IDS reference architecture in real-world scenarios from the energy
sector. The analyzed scenario is positioned in the context of the
EU-funded H2020 project PLATOON.

CCS CONCEPTS
• Information systems → Semantic web description languages;
Graph-based database models.

KEYWORDS
Data Integration Systems, Energy Big Data, Knowledge Graphs,
Data Exchange, Semantic Interoperability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’21 Companion, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8313-4/21/04.
https://doi.org/10.1145/3442442.3453541

ACM Reference Format:
Valentina Janev, Maria Esther Vidal, Kemele Endris, and Dea Pujić. 2021.
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1 INTRODUCTION
Big data is recognized as a relevant asset, and big data-driven appli-
cations are increasingly devised in several domains and disciplines.
Big data has been widely and successfully adopted in several fields
such as health care, retail, and manufacturing. In the energy sector,
big data has been presented as digital technology to understand how
energy is produced and consumed and how these patterns may im-
pact in our lives and economies [18]. Despite recognized as crucial
applications for efficiently generating and consuming energy, Big
data applications in the energy domain are still underdeveloped and
fragmented.

Energy big data is collected from heterogeneous data sources
which include wind farms, solar systems, conventional power plants,
cooling, heating, and lighting systems as well as smart grids. They
represent measurements in different domains, e.g., energy consump-
tion, energy generation, system outages, failures, weather, and en-
ergy transmission. Moreover, these data sources are characterized
by the dominant Big Data dimensions, i.e., volume, velocity, variety,
veracity, and value. Furthermore, interoperability and heterogeneity
are usually caused by the various representations and interpreta-
tions of the data ingested from the data sources. These results put
in perspective the data complexity issues that need to be tackled in
the energy sector. This paper states the requirements to be fulfilled
during data sharing and integration to scale up large data sets and
solve data heterogeneity and quality issues.

Data interoperability is defined as the process of providing uni-
form access to a set of distributed (or decentralized), autonomous,
and heterogeneous data sources [7]. Data integration systems (DIS)
integrates two or more data sets; they provide a global schema (also
known as mediated schema) to provide a unified view of all data
available in different integrated data sources. DISs can produce a ma-
terialized version of a data warehouse of the integrated data sources.

https://doi.org/10.1145/3442442.3453541
https://doi.org/10.1145/3442442.3453541
https://doi.org/10.1145/3442442.3453541
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The unified schema serves not only to explicitly define the underly-
ing data elements (thus achieving syntactic interoperability), but also
to assign unambiguous, shared meaning to processed data, i.e., to
reach semantic interoperability. Semantic interoperability has been
a key consideration in information systems design in the last two
decades and its importance has been widely recognised [6]. How-
ever, predominant big data dimensions (i.e., volume, variety, velocity,
and veracity) negatively impact on the development of scalable and
efficient DIS, in particular, in the energy domain.

Several initiatives have been proposed to develop effective and
scalable semantic interoperability towards data spaces. In the context
of the European Data Strategy (EDS) [11] and the proposed Regula-
tion on European Data Governance [12], a vision has been created
for trusted data intermediaries for B2B data sharing and common
European data spaces in crucial sectors such as health, environment,
energy, agriculture, mobility, finance, manufacturing, public admin-
istration and skills. The International Data Space (IDS) is another
initiative to enable controlled data exchange and integration [2]. IDS
proposes various standards, technologies, and governance models
to facilitate secure and standardized data exchange and integration.
Moreover, IDS provides building blocks for the development of data-
driven services, rs is guaranteed. Lastly, Data Ecosystems [5, 21] are
infrastructures that allow for data exchange across different stake-
holders; they are equipped with data integration techniques and data
management methods to preserve data privacy and security. DEs
facilitate the creation of data markets for ensuring competitiveness
and data sovereignty.

This paper analyzes the requirements for energy data exchange
and illustrates with a real-world use case interoperability issues
that may exist across energy data sources. Furthermore, DEs for
energy data managements are presented as referential architectures
to addressed challenges of the energy sector.

The paper begins with preliminaries related to recent data sharing
initiatives in Europe (Section 2). This is followed by a motivation
scenario from the energy sector in Section 3. Our approach for Big
Data Management and Analytics in energy domain is introduced in
Section 4. Section 5 presents proof-of-concept results.

2 PRELIMINARIES
Semantic integration of big data entails data variety by enabling the
resolution of several interoperability conflicts, e.g., structuredness,
schematic, completeness, domain, granularity, and entity match-
ing conflicts. These conflicts arise because data sources may have
different data models, follow various data representation schemes,
and contain complementary information. Furthermore, a real-world
entity may be represented using multiple properties or at multiple
levels of detail. Thus, data integration techniques able to solve such
interoperability issues while addressing data complexity challenges
imposed by big data characteristics are demanded. To be able to
integrate these sources in a unified way, semantic interoperability
conflicts need to be identified [3].

Data ecosystems (DEs) are data-driven infrastructures that en-
able stakeholders to exchange and integrate data [5, 21]. DEs com-
prise various computational methods to overcome interoperability
issues while preserving data privacy, security, and sovereignty. They
can be aligned to international data strategies, e.g., the European

Data Strategy [11], representing, thus, crucial technological building
blocks for digitalization and data markets, as well as for enhancing
competitiveness and digital sovereignty. A DE can be centralized,
and maintain shared data sources and host services on top of these
sources. Moreover, whenever data privacy policies regulate data
exchange, a materialized integration of the data is impossible. In this
case, several DEs can be interconnected into a DE network [5]. As
an individual DE, each node maintains and exchanges data; it can
also perform data management and analytical tasks. DEs resort to
semantic data models for providing a uniform view of heterogeneous
data sources. Moreover, mapping rules relating to how data sources
are defined in terms of the semantic data models are included. Lastly,
a DE can also be enhanced with a meta-layer that describes business
models, data access regulations, and data exchange contracts.

The International Data Spaces (IDS) [22] is an industrial initia-
tive that follows the DE concept. The IDS reference architecture
IDS aims at i) data governance according to regulations imposed
by data providers; ii) ensuring a trusted and secure data exchange;
iii) semantically representing main data concepts and relationships;
iv) exchanging formats and protocols; and v) providing software
design principles for guiding the implementation of the reference
architecture components. IDS provides building blocks for the de-
velopment of data-driven services, while data sovereignty for data
providers is guaranteed. IDS propose a message-based infrastructure
to enable the communication of the different nodes and components
in a DE. Moreover, IDS resorts to the Semantic Web standards to
express the content and meaning of the shared data source. The Re-
source Description Framework (RDF) and ontologies defined using
RDF is proposed to specify meta-data, and data control and protec-
tion in a decentralized or federated DE. The IDS shared information
model states standards for representing Content, Concept, Com-
munity of Trust, Commodity, and Communication. Proposed W3C
standards include SHACL1 are proposed to express content and in-
tegrity constraints; SKOS2 for modeling concepts and relationships;
and PROV3 for representing data and service provenance.

3 MOTIVATING SCENARIO
One of the long-term objectives of the EU is creation of common
market that will eliminate trade barriers between EU Member States.
In the 1990s, the concept of liberalization of the energy sector was
introduced to achieve benefits and lower prices for consumers while
guaranteeing the security of supply and promoting energy efficiency
and renewable energy resources (RES). Studies [23] have shown
that the policy was partially effective at the EU level (being more es-
pecially in high-income countries) taking into account the dynamiza-
tion of the economy and the achieved environmental sustainability.
The penetration of variable renewable energy sources in the elec-
tricity sector increased significantly over the last decade and that
allowed the renewable energy suppliers to boost their production and
consumption. However, there is still a lack of progress in some coun-
tries and overall the EU energy market remains rather fragmented
into sub-markets with limited cross-border trade and competition.

1https://www.w3.org/TR/shacl/
2https://www.w3.org/2004/02/skos/
3https://www.w3.org/TR/prov-overview/

https://www.w3.org/TR/shacl/
https://www.w3.org/2004/02/skos/
https://www.w3.org/TR/prov-overview/
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Figure 1: Electricity Market - Information flows

3.1 Electricity Balancing and Commercial Flows
on Country Level

Electricity is a commodity that, by its nature, it is difficult to store,
however can be sold and traded. At any given moment, the total
electricity withdrawals (including losses) should equal total injec-
tions in a control area that is composed of one or several countries.
Therefore, on a control block level, a set of actors are responsible
for power stability, quality electricity balancing. Figure 1, for in-
stance, gives a simplified illustration of information and electricity
flows between market participants, while in reality, the electricity
infrastructure and data exchange processes are very complex, i.e.,
infrastructure consists of many energy systems/infrastructures (gen-
eration, transmission, demand infrastructures). The data sources
are related to wind power systems, solar power systems, conven-
tional power plants, cooling, heating, and lighting systems as well as
smart grids. They represent measurements in different domains, e.g.,
energy consumption, energy generation, system outages, failures,
weather, and energy transmission. These data sources are character-
ized by the dominant Big Data dimensions, i.e., volume, velocity,
variety, veracity, and value. Modernization of the grid implies fast
integration of RESs, adapted power system planning, new forecast-
ing methods, more flexible use of power plants, standardized data
exchange, increased transfer capacity, and others.

However, the volatile production of renewable energy sources cre-
ates particular challenges for the daily electricity balancing process
(i.e., balancing the deviations between the planned or forecast pro-
duction and demand, on the one side, and the actual performance in
real-time, on the other side [26]). While the RES installations can be
built relatively quickly, the integration occur when the independent

producers ensure compliance with grid code requirements [4], as
well as, when the basic grid support services are in place.

Therefore, the main objective of power system operator (e.g., TSO
- the transmission system operator) is to keep the energy supplied
by energy service companies (ESCO) in balance with electricity
consumption. While on short time scale the goal is to maintain
power quality, voltage and grid stability, on medium time scale the
scheduled production should meet the planned demand. In order to
meet the demand in a reliable and efficient manner, the suppliers
have to take into account the variability and the degree of uncertainty
of RES power output (independent producers of electricity) and to
ensure adequate reserves and sufficient capacities from conventional
energy sources. The integration of distributed variable generation
from (independent) producers in the grid is an important subject and
therefore it should be adequately addressed.

3.2 Data Exchange Requirements
The ability of two or more networks, systems, applications, compo-
nents, or devices from the same or different vendors to exchange
and subsequently use that information to perform required functions
is called interoperability. Syntactic interoperability is the capability
of two or more systems of communicating and exchanging data,
e.g., specified data formats (e.g., XML), communication protocols
(TCP/IP), and the like are fundamental tools of syntactic interop-
erability. Semantic interoperability [20] is the ability of systems to
exchange information with unambiguous meaning.

Regardless of the type of infrastructure (e.g., wind plant, photo-
voltaic power plant), it is necessary to enable common understand-
ing and messages exchange between different energy stakeholders
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Figure 2: The Energy Big Data integration platform as a Data Ecosystem

including raw data (base reading, measurements), processed infor-
mation (e.g., forecasts, alerts), market information, etc.

The data-driven frameworks previously motivated demand the sat-
isfaction of the following requirements whenever data is exchanged.

Transmission System Operator (TSO):

• RQ-1. For the cross-border electric energy balancing, TSO
needs to exchange balancing plans

• RQ-2. In order to plan capacities and electricity cross-border
exchanges, TSO receive bids from Balancing Service Provider
(BSP) about corresponding volume of balancing energy for
the duration of a contract

• RQ-3. TSO collects load information at different points for
the grid it operates

• RQ-4. Based on the balancing contracts, collected bidding
information, and collected load, TSO assess the balancing
needs and sends plans to BRP for producing electricity

Balance Service Providers (BSP) and Balance Responsible Party
(BRP):

• RQ-5. BSP receives bids from producers (BRP) about the
expected realization (short, medium and long term) in order
to produce a more accurate day-ahead forecast

• RQ-6. BSP collects different meteorological data in order to
plan the energy mix (activation and deactivation of conven-
tional producers)

• RQ-7. BRP and BSP prepares (short, medium and long term)
forecasts, publish the information in transparent way and
sends to TSO

• RQ-8. BSP and BSP collect infrastructure health information
and sends monitoring information to TSO

Distribution System Operator (DSO):
• RQ-9. In order to estimate the effects of integrated Renewable

Energy Sources (RES) Producers in the power system, DSO
receives information from producers about the quality of
produced electricity.

• RQ-10. DSO collects infrastructure health information and
sends monitoring information to TSO.

3.3 Interoperable Analytical Services
Requirements

This subsection presents example scenarios where data-driven meth-
ods are required i.e. analytical services to forecast energy consump-
tion and predict maintenance.
Transmission System Operator (TSO):

Load/Demand forecasting: Electricity demand forecasting is
a central and integral process for planning periodical operations
and facility expansion in the electricity sector. The aims of this
service is load forecasting and prediction of the load pattern. De-
mand forecasting involves accurate prediction of both magnitudes
and geographical locations of electric load over the different peri-
ods of the planning horizon. Load forecasting can be divided into
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Figure 3: Multi-party data exchange based on IDS concept

three categories: short-term forecasts (from one hour to one week),
medium-term forecasts (from a few weeks to a few months and even
up to a few years) and long-term forecasts which is a crucial part
in the electric power system planning, tariff regulation and energy
trading. A long-term forecast is generally known as an annual peak
load. There are several factors that will be taken into consideration
for load forecasting, which can be classified as time factor, economic
factor, weather condition and customer factor.
Balance Responsible Party:

RES forecasting: RES producers need a service for more accu-
rate prediction of renewable energy generation. The wind power
forecasting yields estimate the variable power injected in the distri-
bution grid. This allows prediction when the transformer connecting
the distribution grid to the transmission grid will be overloaded,
i.e., when local wind turbine generator production will be very high.
The various forecasting approaches can be classified according to
the type of input (weather prediction, wind turbine generators data,
historical production data). Statistically based approaches allow very
short-term predictions (2 hours). One of the key challenges for day-
ahead forecasting of wind energy remains unscheduled outages that
can have large effects on the forecasts for small systems, while the
effect is small on the overall grid.

Predictive maintenance: The continuous monitoring of asset
performance generates input that can be used for predictive ana-
lytics and to provide early warnings of component/object failures
(e.g., RES plant/component). Identifying problems before they occur
helps to reduce unscheduled downtime, improve plant maintenance
and optimize asset performance. Therefore a service that identify
rare events that could occur in power plant infrastructure due to
infrastructure health problems, progressive degradation or failure
can be deployed. By monitoring the output from the RES power
plant using the PMU unit and doing advanced power quality (PQ)
analytics close to the source, events can be detected and labeled. By
gradually creating a database of events by learning from historical

data, one could use this classification to find abnormal functioning
of the system before it leads to failure.

4 DATA ECOSYSTEMS FOR ENERGY BIG
DATA MANAGEMENT AND ANALYTICS

Herein, we propose an Energy Big Data integration platform as an
instantiation of a Data Ecosystem (DE) [5], see Figure 2.

4.1 Energy Big Data Integration Platform
An Energy Big Data integration platform is composed of several
data integration platforms (one per Node i). Each node corresponds
to a DE and can be integrated on the central level through mappings
among nodes, data sharing, and service agreements. Each node (in
Figure 2 denoted by Node) applies a data integration process on a
specific use case and can deploy its services for query processing, an-
alytics as well as dashboards. Communication between nodes needs
to be through an access agreement and can employ data connectors
(IDS connectors) to secure data exchange according to data access
contracts and regulations. Nodes have control over their data and
may have data integrated in a unified knowledge graphs. Moreover,
each individual knowledge graph can be linked to knowledge graphs
in other nodes, or to external knowledge graphs like DBpedia [1],
Wikidata [27], or others in the Linked Open Data cloud4. Meta-
data is expressed using common semantic data models (CIM, DCAT,
SKOS), and diverse mapping rule languages (e.g., RML or SPARQL)
that are utilized in order to define (present) each pilot data sets in
terms of the semantic data models. This platform enables pilots to
preserve data sovereignty, privacy, and protection of data and analyt-
ical outcomes, as foreseen in IDS. More importantly, it represents a
decentralized infrastructure empowered with the components that
pave the way for interoperability across stakeholders.

4https://lod-cloud.net/

https://lod-cloud.net/
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Table 1: Exemplary Scenarios

TransmissionSystem Operator (TSO):
Load/Demand forecasting. The aims of this use case are load forecasting and prediction of the
load pattern. It involves accurate prediction of both magnitudes and geographical locations of
electric load over the different periods of the planning horizon. Load forecasting is divided into
three categories: short-term forecasts, medium-term forecasts, and long-term forecasts which is a
crucial part in the electric power system planning, tariff regulation and energy trading.

Renewable Energy Sources (RES) Producer:
RES forecasting. RES allows prediction of when the transformer connecting the distribution grid
to the transmission grid will be overloaded, i.e., when local wind turbine generator production will
be very high. The various forecasting approaches can be classified according to the type of input
(weather prediction, wind turbine generators data, historical production data). Statistically based
approaches allow very short-term predictions (2 hours).

Producer:
Predictive maintenance. The aim of this use case is to provide services that able to identify
rare events that could occur in power plant infrastructure due to infrastructure health problems,
progressive degradation or failure.

4.2 Instantiating a DE
The main features of the energy data integration platform are illus-
trated in the instantiation of a DE; for instance, in the Serbian pilot
depicted in Figure 3, DEs shall be instantiated at

• Producers site (e.g., at a wind power plant, a unified knowl-
edge graph shall be integrated with the production forecast
and the predictive maintenance services);

• Supplier site, an organization that integrate data from many
producers and sell electricity to TSO (e.g., the Power Industry
of Serbia might be interested to integrate the data sources
from power plants it owns and manages);

• Transmission System Operator site, an organization that op-
erates and balances the grid (e.g., the Joint Stock Company
EMS might be interested in improving the data integration
and the transparency of data exchanged with other actors).

For instance at the DE of Transmission System Operator four
main data sources are currently available for integration as follows
i) the Joint Stock Company (JSC) EMS Transparency platform5; ii)
ENTSO-E Transparency platform6; iii) Meteorological data from
WeatherBit7; and iv) data from SCADA system (archive data for
RES production and aggregated load)8.

SCADA RES data is available in real time through a MySQL
database. Data operators for preprocessing, mapping, linking, trans-
formation, and validation are applied to the pilot data sources for
creating a materialized version of the unified knowledge graph. The
mappings between data sources and the target ontology are part of
the DE as well. Furthermore, mappings between concepts from dif-
ferent ontologies are part of each DE. Data sources are also described
in terms of provenance and main properties; these descriptions are
utilized for the creation of a knowledge graph (e.g., by using SDM-
RDFizer [16]) and during query processing (e.g., by using Ontario
[9]). Links between entities in knowledge graph and external data

5https://transparency.ems.rs/
6https://transparency.entsoe.eu
7https://www.weatherbit.io
8http://www.pupin.rs/en/products-services/process-management/scada/

sources can be done by performing entity linking. Tools like Fal-
con2.0 [25] can be applied to linking the pilots’ datasets with exter-
nal knowledge graphs like DBpedia and Wikidata, while SHACL
validation engines (e.g., Trav-SHACL [13]) enable the validation
of integrity constraints. Lastly, RDF knowledge graph will feed the
Semantic based analytics engine SANSA [19] to perform tasks of
knowledge discovery and prediction.

5 APPLICATION: A USE CASE
Although Serbia is not an EU country, the Energy Sector Develop-
ment Strategy is based on the EU Energy Roadmap; one of the goals
is to increase the RES share. Also, the information about the quantity
of energy produced from RES has to be presented to the end user
(guarantee of origin) with a document issued by the Distribution
System Operator. Hence, the information from the producers, via
suppliers and TSO, shall be available to end user (Figure 3).

Once the IDS certificates have been exchanged between the send-
ing and receiving parties, trustful connections are established that
allow standardized data access and information retrieval not just on
country level, but on a level of participants in the IDS compliant
digital ecosystem.

5.1 Developing a Global Schema for the Energy
Domain

Different ontologies are proposed in the literature for development of
a global schema including (i) Upper ontologies (e.g., SUMO, Dolce,
BFO), (ii) Core ontologies (e.g., Agent Ontology, Time Ontology),
(iii) Domain ontologies for a specific domain and (iv) Domain-
specific ontologies that can be reused and extended in order to meet
a specific need of the application. In the literature review phase, we
concentrated on gathering information about the common semantic
concepts and properties applicable for the targeted scenarios, see
also Table 1. Different existing data models have been consulted and
considered for reuse in the piloting phase such as

https://transparency.ems.rs/
https://transparency.entsoe.eu
https://www.weatherbit.io
http://www.pupin.rs/en/products-services/process-management/scada/
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• the IEC Common Information Model standards (CIM)9, see
CIM V2.53.0 Schema (MOF, PDF and UML);

• the Smart Appliances REFerence ontology (SAREF), and the
extension of SAREF to fully support demand/response use
cases in the Energy domain (SAREF4EE);

• the Industrial Data Space (IDS)10 Information Model;
• SEAS - Smart Energy Aware Systems11.

The selection has been done based on a set of scenarios (electric-
ity balancing services, predictive maintenance services, services for
residential, commercial and industrial sector). In our analysis, we
have used the semantic CIM model12. It is a canonical taxonomy
in the form of packages of UML class diagrams referring to the
components of power utility networks with functional definitions
and measurement types to a high degree of granularity (packages:
Core, Topology, Wires, Generation, LoadModel, Outage, SCADA,
ControlArea and others). The concepts selected for reused come
from different packages. For instance, cim:PowerSystemResource
(Core package) can be an item of equipment such as a Switch,
an cim:EquipmentContainer containing many individual items of
equipment such as a Substation. Each cim:PowerSystemResource
is registered on the grid (cim:RegisteredResource) and belong
to a control area (cim:HostControlArea) that is operated by a
cim:ControlAreaOperator. The cim:ControlAreaOperator is
responsible for stabilizing the system frequency (cim:Frequency);
it is therefore also called frequency control.
Example - Load/Demand forecasting: The system is balanced by
utilizing both supply and demand resources. However, the exist-
ing electric power systems were not initially designed to incorpo-
rate different kinds of generation technology (cim:Plant) in the
scale that is required today. Historically, balancing the system has
been maintained mostly by directing thermal power plants to in-
crease or reduce output (cim:ActivePower) in line with changes
in demand. With significant penetration of distributed generation,
the distribution network has become an active system with power
flows and voltages determined by the generation and by the loads
(see cim:AreaLoadCurve). To forecast the load for the next pe-
riod cim:ControlAreaOperator needs a service for load predic-
tion for different cim:LoadForecastType. The service is semanti-
cally described with the SEAS Forecast Ontology. Considering that
cim:ActivePower and cim:AreaLoadCurve, the Transmission Sys-
tem Operator (TSO) (cim:ControlAreaOperator) participates on
the cim:EnergyMarket; it serves as cim:TradeResponsibleParty
and cim:ImbalanceSettlementResponsible. Further, together with
other competing entities, it submits offers (cim:Bid) of power and
energy to meet the next day’s load. Hence, cim:ControlAreaOperator
has to prepare cim:BidSelfSced for the cim:HostControlArea.
The scheduling activity is performed on regular bases, e.g. each hour
(cim:Schedule).

Example - RES forecasting:Another use case is related to a
resource connected to the Grid. Independent producers (IPP) and
producers (cim:Producer) from distributed and renewable sources
(DER) will be actors in the balance reserve market in the future.
The goal of this scenario is to develop and test a service for more

9https://www.dmtf.org/standards/cim/cim_schema_v2530)
10https://w3id.org/seas/
11https://ci.mines-stetienne.fr/seas/index.html
12https://ontology.tno.nl/IEC_CIM/

accurate prediction of renewable energy generation from RES plants
(cim:Plant). Electricity production however from solar and wind
plants (cim:Plant) is subject to considerable forecast errors that
drive demand for balancing, i.e., for (cim:ReserveReq). The amount
for each reservation is defined by the Agreement (cim:Agreement)
on the provision of system services signed between the transmission
system operator (cim:SystemOperator) and the balancing service
provider (cim:BalanceSupplier).

Once the global schema has been developed, it can be used across
the nodes established in the energy data ecosystem.

5.2 Unified Knowledge Graph Creation Process
In this section, two scenarios of the knowledge graph creation pro-
cess and their pros and cons are discussed. Creating a knowledge
graph from heterogeneous data sources, for example at the Supplier
site, requires the description of the entities in the data sources us-
ing RDF vocabularies, as well as the performance of curation and
integration tasks to reduce data quality issues, e.g., missing values
or duplicates. Two types of knowledge graph creation strategies:
materialized (i.e., data warehousing) and virtual (i.e., Data Lake).
Both strategies are applicable for the use cases discussed above.
Materialized Knowledge Graph Creation Process: In a material-
ized knowledge graph creation process, data from individual data
sources are loaded and materialized into an RDF format and stored
in a physical database, the so-called triplestore. Figure 4 shows the
data curation and integration sub-components for creating a unified
knowledge graph. The ingestion and preprocessing component is the
gateway to the knowledge graph creation process. Input data from
Producers’ data sources first will be stored in a raw data repository,
i.e., staging repository. Any preprocessing steps, such as cleaning,
normalization, and aggregation, that are predefined for input data are
applied and provenance is recorded. The data integrator component
then orchestrates the knowledge graph creation process according to
the data source’s configuration by invoking the Linking and Enrich-
ment, RDFizer/Semantifier, and Data Validation sub-components
and finally integrating data to the Supplier’s unified knowledge
graph. The Linking and Enrichment component performs entity link-
ing and enrichment using external as well as existing materialized
knowledge graphs. The RDFizer/Semantifier component transforms
non-semantic, i.e., raw, data to RDF graph based on mapping rules.
Data validation component checks data constraint conformance.
Virtual Knowledge Graph Creation Process: In a virtual knowl-
edge graph creation process, data remains in the sources (in raw
format) and is accessed as needed during query time. The federated
query processing component can handle this process. The federated
query processing component employs the data source descriptions
stored in the metadata store to perform the integration during query
time. Metadata about the number of data sources available, the prove-
nance of the data sets, and mapping rules to transform data to RDF
graph are stored in a separate data store available for both mate-
rialized and virtual data integration processes. If the data sets are
already included in the materialized knowledge graph, then the fed-
erated query processing component can directly access them without
performing data transformation at query time. However, if the data
sources are stored in raw format, then the data transformation rules
will be applied only for the part of the data set required to answer the

https://www.dmtf.org/standards/cim/cim_schema_v2530)
https://w3id.org/seas/
https://ci.mines-stetienne.fr/seas/index.html
 https://ontology.tno.nl/IEC_CIM/
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Figure 4: Unified Knowledge Graph Creation Process

query. Figure 5 shows the basic components of the virtual knowledge
graph creation process through a federation system. The federated
query engine will use SPARQL query language 13 to access the
unified knowledge graph, as described in the next Section.

5.3 Traversing the Knowledge Graph
Once the knowledge graph creation process is established, exploring
the knowledge base will be possible via a query engine. Additionally,
data exploration and knowledge discovery services can be employed.
Results of executing a federated query can be used as input of Data
Analytics or Knowledge Discovery tasks. As the knowledge base
is defined through mapping to semantic data models for energy, the
query processing engine is able to process queries posed using the
SPARQL query language. If the materialization approach is applied
and data is stored in a centralized triple store, e.g., Virtuoso, then
the knowledge base can be accessed using SPARQL query over
the query engine embedded in the triple store. However, if the size
(in terms of volume) of the materialized knowledge base is big,
then partitioning and distribution is necessary for timely response
from the query engine and handling the resource requirements to
store such large data in expensive servers. Such distribution of data
needs to be accessed through a federated query engine that is able to
distribute the posed query to each partition and merge data returned
from them. Virtual integration approach can also be applied over
heterogeneous data sources. In this case, the query processing engine
not only query each data source and merge results but also should be
able to transform raw data to the semantic models specified in the
mappings during query time.

13https://www.w3.org/TR/rdf-sparql-query/

5.4 Federated Query Processing
Federated query processing system provides a unified access inter-
face to a set of autonomous, distributed, and heterogeneous data
sources. While distributed query processing systems have control
over each data set, federated query processing engines have no con-
trol over data sets in the federation, and data providers can join
or leave the federation at any time and modify their data sets in-
dependently. Query Processing in the context of data sources in
a federation is more difficult than centralized systems because of
the different parameters involved that affect the query processing
engine’s performance. Data sources in a federation might contain
data fragments about an entity, have different processing capabilities,
and support different access patterns, access methods, and operators.
The role of federated query processing engines is to transform a
query, i.e., the federated query, expressed in terms of the global
schema into an equivalent query expressed in the schema of the data
sources, i.e., the local query. The local query represents the feder-
ated query’s actual execution plan by the federation’s data sources.
An essential part of query processing in the context of federated
data sources is query optimization. Since many execution plans are
correct transformations of the same federated query, the one that
optimizes (minimize) resource consumption should be retained. The
performance of query processors can be measured by the total cost
that will be used in processing the query and the response time of
the query, i.e., the time elapsed for executing the query.

Example:Let us consider the following question expressed in
SPARQL: “A list of countries, their renewable energy plants, and
respective installed generation capacity for the year 2020”

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

https://www.w3.org/TR/rdf-sparql-query/
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Figure 5: Federated Query Processing at TSO level

PREFIX energy: <http://w3id.org/energy/>
PREFIX pl: <http://energy.com/resource/>

SELECT DISTINCT ?country ?productionType ?measure
WHERE {
?genCapacity a energy:GenerationCapacity .
?genCapacity energy:productionType ?productionType .
?genCapacity energy:country ?country .
?genCapacity energy:measure ?g_measure .
?genCapacity energy:agg_year “2020” .
?productionType wdt:P279 wd:Q12705 .
}

To execute this query, a federation of knowledge graphs need to
be contacted, i.e., the DE knowledge graph and the external knowl-
edge graphs like Wikidata 14. The federated query engine maintains
metadata about these knowledge graphs, and it is able to select
them as relevant sources for the query. Then, once the knowledge
graphs are selected, the federated query engine decomposes the
query into subqueries SQ1 and SQ2, and executes them over the
selected knowledge graphs, respectively. Query SQ1 is defined as
follows; it is executed against the local knowledge graph.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX energy: <http://w3id.org/energy/>
PREFIX pl: <http://energy.com/resource/>
SELECT DISTINCT ?country ?productionType ?measure
WHERE {
?genCapacity a energy:GenerationCapacity .
?genCapacity energy:productionType ?productionType .
?genCapacity energy:country ?country .
?genCapacity energy:measure ?g_measure .

14https://www.wikidata.org/

?genCapacity energy:agg_year “2020” .
}

On the other hand, query SQ2 is defined and evaluated over
Wikidata.

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT DISTINCT ?productionType
WHERE {

?productionType wdt:P279 wd:Q12705 .
}

Executing query SQ1 produces instantiantions for the variables
?country ?productionType, and ?measure. While executing SQ2
over the Wikidata knowledge graph produces answers describing
renewable energy plants; these plants are described as values of the
variables ?productionType and ?productionTypeLabel.

The federated query engine performs join against the results
produced by the execution of these two queries; the values of the
variable ?productionType are utilized as a join column. As a result,
only one renewable energy plant can be matched, i.e., the wind
power. It is important to highlight that without the integration of
the transparency platform data and the linking of the corresponding
production types with Wikidata, this query could not be executed.

6 DISCUSSION
In the last decade, the Big Data paradigm has gain momentum and
is generally employed by businesses on a large scale to create value
that surpasses the investment and maintenance costs of data. The
energy sector is an example where tremendous amounts of data are
collected from numerous sensors, which are generally attached to
different plant subsystems. The new paradigm of DEs for smart
grids that includes renewable energy sources challenges the existing

https://www.wikidata.org/
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network infrastructure and the energy management systems even
more. This new DEs will address the following challenges:

• definition of new approaches to data management and pro-
cessing and extending the service portfolio of various energy
stakeholders, such as ESCOs, DSOs and utilities in order to
achieve two-way flows of electricity and information optimize
the generation, distribution and consumption of electricity;

• deploying distributed/edge processing and data analytics tech-
nologies to optimize the operation of the real-time energy
system management and automate the “monitor-forecast-
optimize-control” loop;

• implementation of effective integration of relevant digital
technologies for transforming the system from top down cen-
tralized production and rigid distribution framework to col-
laborative ecosystem of self-managed prosumers able to act
independently on the liberalized energy markets.

To achieve the targets envisioned in the latest EU energy strat-
egy and the European Green Deal Action Plan [10], a standard
framework is needed to encapsulate, communicate and manage the
distributed assets in the energy value chain. In this paper, we show-
cased how a “networks” of distributed data integration platforms can
be instantiated in the energy value chain for establishing a »network
of trusted data«. Some of the benefits for main actors are

• Secure data exchange: For instance, using Industrial Data
Space concept that features various levels of protection, data
is exchanged securely across the entire data supply chain (and
not just in bilateral data exchange).

• Data governance and sovereignty: In the proposed concept,
data owner determines the terms and conditions of use of the
data provided, while data sovereignty always remains with the
respective Data Provider. The Provider makes data available
to be requested by certain contractors in the Data Space by
its own rules. Additionally, Provider can offer data services
(e.g. via an »AppStore«) to be found by all DE participants.

• Innovative Scalable and replicable energy management
services: The Data Spaces opens opportunities for new data-
driven and model-driven services that will complement and
enhance the existing e.g. balancing services, energy genera-
tion and consumption intelligent forecasts services, energy
performance assessment services, etc.

7 RELATED WORKS
Gelhaar and Otto [14] highlight the value of data-driven solutions
in the digitization era and outline the challenges that need to be ad-
dressed in DEs in emerging areas like maritime, manufacturing, and
science. Controlled and secured data exchange in a traceable way
are among the most relevant challenges. As shown in the described
scenarios, DEs for energy big data are demanded to provide compu-
tational methods and semantic-based formalisms (e.g., ontologies)
to represent the meaning of the data to be shared and processed.
The meta-data layer comprises unified schemas, mappings between
data sets and concepts in the unified schema, and alignments across
ontologies. Furthermore, following the IDS reference architecture,
integrity constraints are represented using declarative formalisms
(e.g., SHACL), while data provenance and quality is described based
on standard vocabularies (e.g., PROV and DQV). These semantic

descriptions provide building blocks for documenting data sharing,
integration, and processing. As a result, services for tracking down
DE components can be provided.

Several approaches have been defined to follow the DE architec-
ture with the aim of solving interoperability across heterogeneous
data sets during query processing time; they are usually named as fed-
erated query engines. Exemplary approaches include GEMMS [24],
PolyWeb [17], BigDAWG [8], Constance [15], and Ontario [9].
These systems collect metadata about the main characteristics of
their data sets, e.g., formats and query capabilities. Additionally,
they resort to a global ontology to describe contextual information
and the relationships among data sets, for purposes of optimized
data integration, query processing, and automated schema discovery
in quasi-central settings. These metadata have shown to be crucial
for enabling these systems to perform query processing effectively.
Knowledge-driven DEs are built on these results and make available
the semantic description of the data collections made available by
stakeholders. Furthermore, a DE empowers federated query process-
ing engines with factual statements about the integrity constraints
satisfied by the data retrieved and merged during query processing.
As a consequence, a new paradigm shift in data management is de-
vised towards tracing down data integration during query processing.

8 CONCLUSION AND FUTURE WORK
Smart Grids are cyber-physical energy systems, the next evolution
step of the traditional power grid and are characterized by a bidi-
rectional flow of information and energy. One of the requirements
related to data access procedures in future electricity markets is
related to interoperability of energy services. Therefore, the over-
all goal of the paper is to showcase and evaluate Data Ecosystems
and the International Data Space concept for the energy sector. The
International Data Space initiative is based on the use of semantic
technologies for creation of knowledge-based systems that will aid
machines in integrating and processing resources contextually and
intelligently. In our work, we showed how DES provide the building
blocks for enhancing the interoperability of energy management
applications/services; they also enable the integration of energy data
in the European Energy Data Space. The meta-data layer in DEs
together with the internal SCADA information model can be used as
an information hub (‘knowledge graphs’) for (1) building data con-
nectors that will facilitate integration of services in future integrated
energy systems and (2) improving the explainability of machine
learning services / analytical applications. The selection of models
has been done based on a set of scenarios (electricity balancing
services, predictive maintenance services, services for residential,
commercial and industrial sector). The proposed approach is being
used in the EU-funded H2020 project PLATOON. The development
of all the computational components and unified schemas to fulfil
the requirements of each pilot is part of our future agenda.
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