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5Abstract Today, data are growing at a tremendous rate, and according to the
6International Data Corporation, it is expected they will reach 175 zettabytes by
72025. The International Data Corporation also forecasts that more than 150B devices
8will be connected across the globe by 2025, most of which will be creating data in
9real time, while 90 zettabytes of data will be created by Internet of things (IoT)
10devices. This vast amount of data creates several new opportunities for modern
11enterprises, especially for analyzing enterprise value chains in a broader sense. In
12order to leverage the potential of real data and build smart applications on top of
13sensory data, IoT-based systems integrate domain knowledge and context-relevant
14information. Semantic intelligence is the process of bridging the semantic gap
15between human and computer comprehension by teaching a machine to think in
16terms of object-oriented concepts in the same way as a human does. Semantic
17intelligence technologies are the most important component in developing artifi-
18cially intelligent knowledge-based systems, since they assist machines in contextu-
19ally and intelligently integrating and processing resources. This chapter aims at
20demystifying semantic intelligence in distributed, enterprise, and Web-based infor-
21mation systems. It also discusses prominent tools that leverage semantics, handle
22large data at scale, and address challenges (e.g., heterogeneity, interoperability, and
23machine learning explainability) in different industrial applications.
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25Artificial intelligence · Interoperability

26Key Points
27• Semantic intelligence is the process of bridging the semantic gap between human
28and computer comprehension.
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29 • There is a need for semantic standards to improve the interoperability of complex
30 systems.
31 • The semantic data lakes supply the data lake with a semantic middleware that
32 allows uniform access to original heterogeneous data sources.
33 • Knowledge graphs is a solution that allows the building of a common under-
34 standing of heterogeneous, distributed data in organizations and value chains, and
35 thus provision of smart data for artificial intelligence applications.
36 • The goal of semantic intelligence is to make business intelligence solutions
37 accessible and understandable to humans.

38 4.1 Introduction

39 Both researchers and information technology (IT) professionals have to cope with a
40 large number of technologies, frameworks, tools, and standards for the development
41 of enterprise Web-based applications. This task has become even more cumbersome
42 as a result of the following events:

43 • The emergence of the Internet of things (IoT) in 1999 (Rahman & Asyhari, 2019)
44 • The development of Semantic Web (SW) technologies as a cornerstone for
45 further development of the Web (Berners-Lee, 2001)
46 • The development of big data solutions (Laney, 2001)

47 Hence, topics such as smart data management (Alvarez, 2020), linked open data
48 (Auer AU1et al., 2014), semantic technologies (Janev & Vraneš, 2009), and smart
49 analytics have spawned a tremendous amount of attention among scientists, software
50 experts, industry leaders, and decision-makers. Table 4.1 defines a few terms related
51 to data, such as open data, big data, linked data, and smart data.

t1:1 Table 4.1 Definitions

Term Definitiont1:2

Open data “The data available for reuse free of charge can be observed as open data” (Janev
et al., 2018)t1:3

Big data “‘Big data’ are high-volume, velocity, and variety information assets that demand
cost-effective, innovative forms of information processing for enhanced insight and
decision making” (Laney, 2001)t1:4

“Big data are high volume, high velocity, and/or high variety information assets that
require new forms of processing to enable enhanced decision making, insight
discovery, and process optimization” (Manyika, 2011)t1:5

Linked
data

The term “linked data” refers to a set of best practices for publishing structured data
on the Web. These principles have been coined by Tim Berners-Lee in the design
issue note Linked Dataa (Berners-Lee, 2006)t1:6

Smart
data

“Simply put, if big data are a massive amount of digital information, smart data are
the part of that information that is actionable and makes sense. It is a concept that
developed along with, and thanks to, the development of algorithm-based technol-
ogies, such as artificial intelligence and machine learning” (Dallemand, 2020)t1:7

t1:8 ahttps://www.w3.org/DesignIssues/LinkedData
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52Despite the fact that the term IoT (“sensors and actuators embedded in physical
53objects and connected via wired and wireless networks”) is 20 years old, the actual
54idea of connected devices is older and dates back to the 1970s. In the last two
55decades, with the advancement in ITs, new approaches have been elaborated and
56tested for handling the influx of data coming from IoT devices. On one side, the
57focus in industry has been on manufacturing and producing the right types of
58hardware to support IoT solutions. On the other, the software industry is concerned
59with finding solutions that address issues with different aspects (dimensions) of data
60generated from IoT networks, including (1) the volume of data generated by IoT
61networks and the methods of storing data, (2) the velocity of data and the speed of
62processing, and (3) the variety of (unstructured) data that are communicated via
63different protocols and the need for adoption of standards. While these three Vs have
64been continuously used to describe big data, additional dimensions have been added
65to describe data integrity and quality, such as (4) veracity (i.e., truthfulness or
66uncertainty of data, authenticity, provenance, and accountability), (5) validity (i.e.,
67correct processing of data), (6) variability (i.e., context of data), (7) viscosity (i.e.,
68latency data transmission between the source and destination), (8) virality (i.e., speed
69of the data sent and received from various sources), (9) vulnerability (i.e., security
70and privacy concerns associated with data processing), (10) visualization (i.e.,
71interpretation of data and identification of the most relevant information for the
72users), and (11) value (i.e., usefulness and relevance of the extracted data in making
73decisions and capacity to turn information into action).
74With the rapid development of the IoT, different technologies have emerged to
75bring the knowledge (Patel et al., 2018) within IoT infrastructures to better meet the
76purpose of the IoT systems and support critical decision-making (Ge et al., 2018;
77Jain, 2021). While the term “big data” refers to datasets that have large sizes and
78complex structures, the term “big data analytics” refers to the strategy of analyzing
79large volumes of data which are gathered from a wide variety of sources, including
80different kind of sensors, images/videos/media, social networks, and transaction
81records. Aside from the analytic aspect, big data technologies include numerous
82components, methods, and techniques, each employed for a slightly different pur-
83pose, for instance for pre-processing, data cleaning and transformation, data storage,
84and visualization.
85In addition to the emergence of big data, the last decade has also witnessed a
86technology boost for artificial intelligence (AI)-driven technologies. A key prereq-
87uisite for realizing the next wave of AI application is to leverage data, which are
88heterogeneous and distributed among multiple hosts at different locations. Conse-
89quently, the fusion of big data and IoT technologies and recent advancements in
90machine learning have brought renewed visibility to AI and have created opportu-
91nities for the development of services for many complex systems in different
92industries (Mijović et al., 2019; Tiwari et al., 2018). Nowadays, it is generally
93accepted that AI methods and technologies bring transformative change to societies
94and industries worldwide. In order to reduce the latency, smart sensors (sensor
95networks) are empowered with embedded intelligence that performs pre-processing,
96reduces the volume, and reacts autonomously. Additionally, in order to put the data
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97 in context, standard data models are associated with data processing services, thus
98 facilitating the deployment of sensors and services in different environments.
99 This chapter explains the need for semantic standards that improve interopera-
100 bility in complex systems, introduce the semantic lake concept, and demystify the
101 semantic intelligence in distributed, enterprise, and Web-based information systems
102 (see the following section). In order to select an appropriate semantic description,
103 processing model, and architecture solution, data architects and engineers need to
104 become familiar with the analytical problem and the business objectives of the
105 targeted application. Therefore, the authors describe four eras of data analytics and
106 introduce different big data tools.

107 4.2 From Data to Big Data to Smart Data Processing

108 Data-driven technologies such as big data and the IoT, in combination with smart
109 infrastructures for management and analytics, are rapidly creating significant oppor-
110 tunities for enhancing industrial productivity and citizen quality of life. As data
111 become increasingly available (e.g., from social media, weblogs, and IoT sensors),
112 the challenge of managing them (i.e., selecting, combining, storing, and analyzing
113 them) is growing more urgent (Janev, 2020). Thus, there is a demand for develop-
114 ment of computational methods for the ingestion, management, and analysis of big
115 data, as well as for the transformation of these data into knowledge.
116 From a data analytics point of view, this means that data processing has to be
117 designed taking into consideration the diversity and scalability requirements of the
118 targeted domain. Furthermore, in modern settings, data acquisition occurs in near
119 real time (e.g., IoT data streams), and the collected and pre-processed data are
120 combined with batch loads by different automated processes. Hence, novel archi-
121 tectures are needed; these architectures have to be “flexible enough to support
122 different service levels as well as optimal algorithms and techniques for the different
123 query workloads” (Thusoo et al., 2010).

124 4.2.1 Variety of Data Sources

125 The development of big data-driven pipelines for transforming big data into action-
126 able knowledge requires the design and implementation of adequate IoT and big data
127 processing architecture, where, in addition to volume and velocity, the variety of
128 available data sources should be considered. The processing and storage of data
129 which are generated by a variety of sources (e.g., sensors, smart devices, and social
130 media in raw, semi-structured, unstructured, and rich media formats) is complicated.
131 Hence, different solutions for distributed storage, cloud computing, and data fusion
132 are needed (Liu et al., 2015). In order to make the data useful for data analysis,
133 companies use different methods to reduce complexity, downsize the data scale (e.g.,
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134dimensional reduction, sampling, and coding), and pre-process the data (i.e., data
135extraction, data cleaning, data integration, and data transformation) (Wang, 2017).
136Data heterogeneity can thus be defined in terms of several dimensions:

137• Structural variety, which refers to data representation and indicates multiple data
138formats and models. For instance, the format of satellite images is very different
139from the format used to store tweets which are generated on the Web.
140• Media variety, which refers to the medium in which data get delivered. For
141instance, the audio of a speech vs. the transcript of the speech may represent
142the same information in two different media.
143• Semantic variety, which refers to the meaning of the units (terms) used to measure
144or describe the data that are needed to interpret or operate on the data. For
145instance, a standard unit for measuring electricity is the kilowatt; however, the
146electricity generation capacity of big power plants is measured in multiples of
147kilowatts, such as megawatts and gigawatts.
148• Availability variations, which mean that the data can be accessed continuously
149(e.g., from traffic cameras) or intermediately (e.g., only when the satellite is over
150the region of interest).

151In order to enable broad data integration, data exchange, and interoperability, and
152to ensure extraction of information and knowledge, standardization at different
153levels (e.g., metadata schemata, data representation formats, and licensing condi-
154tions of open data) is needed. This encompasses all forms of (multilingual) data,
155including structured and unstructured data, as well as data from a wide range of
156domains, including geospatial data, statistical data, weather data, public sector
157information, and research data, to name a few.

1584.2.2 The Need for Semantic Standards

159In 1883, Michel Bréal, a French philologist, coined the term “semantics” to explain
160how terms may have various meanings for different people, depending on their
161experiences and emotions. In the information processing context, semantics refers to
162the “meaning and practical use of data” (Woods, 1975), namely, the efficient use of a
163data object for representing a concept or object. Since 1980, the AI community has
164promoted the concept of providing general, formalized knowledge of the world to
165intelligent systems and agents (see also the panel report from the 1997 Data
166Semantics: what, where and how?) (Sheth, 1997).
167In 2001, Sir Tim Berners-Lee, Director of the World Wide Web Consortium
168(W3C), presented his vision for the SW, describing it as an expansion of the
169traditional Web and a global distributed architecture where data and services can
170easily interact. In 2006, Berners-Lee also introduced the basic (linked data) princi-
171ples for interlinking datasets on the Web via references to common concepts. The
172Resource Description Framework (RDF) norm is used to reflect the knowledge that
173defines the concepts. Parallel to this, increased functionalities and improved
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174 robustness of modern RDF stores, as well as wider adoption of standards for
175 representing and querying semantic knowledge, such as RDF(s) and SPARQL,
176 have adopted linked data principles and semantic technologies in data and knowl-
177 edge management tasks. Table 4.2 gives an overview of (recommended) SW
178 technologies by the W3C.1

179 Aside from the W3C, there are a few international organizations (associations or
180 consortia) that are important for assessing and standardizing ITs, such as IEEE-SA
181 (see The Institute of Electrical and Electronics Engineers Standards Association2),
182 OASIS (see The Organization for the Advancement of Structured Information
183 Standards3), and a number of others.

t2:1 Table 4.2 An overview of (recommended) Semantic Web technologies

Technology Definitiont2:2

RDF, 2004 RDF is a general-purpose language for encoding and representing data on the
Internet
The RDF Schema is used to represent knowledge in terms of objects
(“resources”) and relationships between themt2:3

RDFS, 2004 RDF Schema serves as the meta language or vocabulary to define properties and
classes of RDF resourcest2:4

SPARQL,
2008

SPARQL Query Language for RDF is a standard language for querying RDF
datat2:5

OWL, 2004 OWL is a standard Web Ontology Language that facilitates greater machine
interpretability of Web content than that supported by XML, RDF, and RDF-S by
providing additional vocabulary along with a formal semanticst2:6

SWRL, 2004 SWRL aims to be the standard rule language of the Semantic Web. It is based on
a combination of the OWL DL, OWL Lite, RuleML, etc.t2:7

WSDL, 2007 WSDL provides a model and an XML format for describing Web servicest2:8

SAWSDL,
2007

SAWSDL (Semantic Annotations for WSDL and XML Schema) explains how to
apply semantic annotations to WSDL and XML Schema documentst2:9

RDFa, 2008 A collection of attributes and processing rules for extending XHTML to support
RDFt2:10

GRRDL,
2007

A mechanism for Gleaning Resource Descriptions from Dialects of Languages
(e.g., microformats)t2:11

OWL 2, 2012 OWL 2 extends the W3C OWLWeb Ontology Language with a small but useful
set of features (EL, QL, RL) that enable effective reasoningt2:12

DQV, 2015 Data Quality Vocabulary is an extension to the DCAT vocabulary to cover the
quality of the datat2:13

SHACL,
2017

Shapes Constraint Language is a language for validating RDF graphs against a
set of conditionst2:14

DCAT, 2020 Data Catalog Vocabulary is an RDF vocabulary for facilitating interoperability
between Web-based data catalogst2:15

1http://www.w3.org/.
2http://standards.ieee.org/.
3http://www.oasis-open.org/.
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1844.2.3 Semantic Integration and Semantic Data Lake Concept

185In Tim Berners’s vision, the Web is a massive platform-neutral engineering solution
186that is service-oriented, with service specified by machine-processable metadata,
187formally defined in terms of messages which are exchanged between provider and
188requester agents, rather than the properties of the agents themselves. In the last
18910 years, businesses have embraced Tim Berners’s vision and the linked data
190approach, and cloud computing infrastructures have enabled the emergence of
191semantic data lakes.
192The following are some of the ways by which computer scientists and software
193providers have tackled the emerging problems in the design of end-to-end data/
194knowledge processing pipelines:

195• In addition to operational database management systems (present on the market
196since the 1970s), different NoSQL stores appeared that lack adherence to the
197time-honored SQL principles of ACID (i.e., atomicity, consistency, isolation, and
198durability) (Table 4.3).
199• Cloud computing emerged as a paradigm that focuses on sharing data and
200computations over a scalable network of nodes including end user computers,
201data centers, and Web services (Assunção et al., 2015).
202• The concept of open data emerged (“data or content that anyone is free to use,
203reuse and redistribute”) as an initiative to enable businesses to use open data
204sources to improve their business models and drive a competitive advantage (see
205an example of integrating open data in end-to-end processing in modern ecosys-
206tem in Fig. 4.1).
207• The concept of data lake as a new storage architecture was promoted; in it, raw
208data can be stored regardless of source, structure, and (usually) size. As a result,
209the data warehousing method (which is built on a repository of centralized,
210filtered data that have already been processed for a particular purpose) is seen
211as obsolete, as it causes problems with data integration and adding new data
212sources.

213The development of business intelligence services is simple, when all data
214sources collect information based on unified file formats and the data are uploaded
215to a data warehouse. However, the biggest challenge that enterprises face is the
216undefined and unpredictable nature of data appearing in multiple formats. Addition-
217ally, in order to gain competitive advantage over their business rivals, the companies
218utilize open data resources that are free from restrictions, can be reused and
219redistributed, and can provide immediate information and insights. Thus, in a
220modern data ecosystem, data lakes and data warehouses are both widely used for
221storing big data. A data warehouse (Kern et al., 2020) is a repository for structured,
222filtered data that have already been processed for a specific purpose. A data lake is a
223large, raw data repository that stores and manages the company’s data bearing any
224format. Moreover, recently, semantic data lakes (Mami et al., 2019 AU3) were introduced
225as an extension of the data lake supplying it with a semantic middleware, which
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t3:1 Table 4.3 Semantic intelligence in the drug domain (example)

Step Descriptiont3:2

1 Identification of datasets The data architect first identifies the existing company data
sources, as well as available open data sources (e.g.,
DrugBank and DBpedia)t3:3

Elaboration of business
questions

The business users specify questions to be answered with a
unified access interface to a set of autonomous, distributed,
and heterogeneous data sources, as well as with AI-based
business intelligence servicest3:4

2 Development of semantic
models

In the case of the drug domain, the drug dataset has properties
such as generic drug name, code, active substances,
non-proprietary name, strength value, cost per unit, manufac-
turer, related drug, description, URL, and license. Hence,
ontology development can leverage reuse of classes and
properties from existing ontologies and vocabularies including
Schema.org vocabularya, DBpedia Ontologyb, UMBEL
(Upper Mapping and Binding Exchange Layer)c, DICOM
(Digital Imaging and Communications in Medicine)d, and
DrugBankt3:5

3 Elaboration of extraction
rules

The data administrator runs the extraction process using soft-
ware tools, such as OpenRefine (which the authors used), RDF
Mapping Languagee, and XLWrapf, which is a Spreadsheet-
to-RDF Wrapper, among otherst3:6

Elaboration of mapping
rules

For the identified datasets (i.e., Excel, XLS data, and MySQL
store), the data administrator can specify and run mapping
rules in order to query the data on-the-fly without data trans-
formation or materializationt3:7

4 Elaboration of quality
assessment services

The business user/data architect specifies models for describ-
ing the quality of the semantic (big linked) data which are
needed. Zaveri et al. (2016), for instance, grouped the dimen-
sions into:
• Accessibility: availability, licensing, interlinking, security,
and performance
• Intrinsic: syntactic validity, semantic accuracy, consistency,
conciseness, and completeness
• Contextual: relevancy, trustworthiness, understandability,
and timeliness
• Representational: representational conciseness, interopera-
bility, interpretability, and versatilityt3:8

5 Standardization of
interlinking

Specialized tools are used to help the interlinking and to
discover links between the source and target datasets. Since
the manual mode is tedious, error-prone, and time-consuming,
and the fully automated mode is currently unavailable, the
semi-automated mode is preferred and reliable. Link genera-
tion application yields links in RDF format using rdfs:seeAlso
or owl:sameAs predicatest3:9

Standardization of data
querying connectors

The data administrator specifies connectors as standardized
components for interoperability between different solutions.
Once the datasets are prepared based on standard vocabularies,
the next step is to provide standard querying mechanisms. To
this aim, vocabularies such as DCAT and DQV are used to

(continued)
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226allows uniform access to original heterogeneous data sources. Semantic data lakes
227integrate knowledge graphs (KGs), a solution that allows the building of a common
228understanding of heterogeneous, distributed data in organizations and value chains,
229and thus provision of smart data for AI applications.
230In 2012, the announcement of the Google Knowledge Graph drew much attention
231to graph representations of general world knowledge. In the last decade, enterprise
232settings have shown a tendency to collect and encapsulate metadata in a form of
233corporate knowledge (or smart data) using semantic technologies, while the data are
234stored or managed via an enterprise KG. However, many factors have prevented
235effective large-scale development and implementation of complex knowledge-based

t3:11Table 4.3 (continued)

Step Description t3:12

describe the datasets and standardize the access to data.
SPARQL is one of the standard querying languages for RDF
KGs t3:10

6 Exploration via federated
querying

Intelligently searching vast datasets of drug data (i.e., patents,
scientific publications, and clinical trials) data will help, for
instance, accelerate the discovery of new drugs and gain
insights into which avenues are likely to yield the best results.
Federated query processing techniques (Endris et al., 2020)
provide a solution to scale up to large volumes of data dis-
tributed across multiple data sources. Source details are used
to find efficient execution plans that reduce the overall exe-
cution time of a query while increasing the completeness of
the answers t3:11

7 Advanced Data Analytics
Services

Drug data aggregated with other biomedical data often display
different levels of granularity, that is, a variety of data
dimensionalities, sample sizes, sources, and formats. In order
to support human decision-making, different widgets are
needed for visualization and tracing the results of interactive
analysis t3:12

Advanced Business Intelli-
gence Services

Algorithm-based techniques (i.e., machine learning and deep
learning algorithms) have already been used in drug discov-
ery, bioinformatics, and cheminformatics. What is new in
semantic intelligence-based systems is that contextual infor-
mation from the KG can be used in machine learning, thus
improving, for instance, the recommendation and
explainability capabilities (Fletcher, 2019; Patel et al., 2020) t3:13

8 Integration in big data
ecosystem

There are multiple ways of exposing and exploring the
KGs-based services to public and other businesses, for
instance, using the data-as-a-service or software-as-a-service
concept t3:14

t3:15ahttps://schema.org/
bhttps://wiki.dbpedia.org/services-resources/ontology
chttp://umbel.org/
dhttps://www.dicomstandard.org/
ehttps://github.com/RMLio
fhttp://xlwrap.sourceforge.net/
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236scenarios because of the inability to cope with the rising challenges coming from big
237data applications, the rigidity of existing database management systems, the inability
238to go beyond the standard requirements of query answering, and the lack of
239knowledge languages expressive enough to address real-world cases. Despite the
240challenges, the voluntary created KGs such as DBpedia (Auer et al., 2007a, b AU4)
241motivated many big companies (e.g., Google, Facebook, and Amazon) to explore
242the benefits of using semantic technologies for profit.

2434.3 Semantics and Data Analytics

244Data analytics is a concept that refers to a group of technologies that are focused on
245data mining and statistical analysis. Data analytics has grown in popularity as a field
246of study for both practitioners and academics over the last 70 years. The Analytics
2471.0 era started in the 1950s and lasted roughly 50 years. With the advent of relational
248databases in the 1970s and the invention of the Web by Sir Tim Berners-Lee in 1989,
249the data analytics progressed dramatically as a new software approach, and AI was
250developed as a separate scientific discipline.
251The Analytics 2.0 era began in the 2000s with the introduction of Web 2.0-based
252social and crowdsourcing systems. Although business solutions in the Analytics 1.0
253era were focused on relational and multidimensional database models, the Analytics
2542.0 era introduced NoSQL and big data database models, which opened up new
255goals and technological possibilities for analyzing large volumes of semi-structured
256data. Before big data and after big data are terms companies and data scientists use to
257describe these two spans of time (Davenport, 2013).
258The fusion of internal data with externally sourced data from the Internet,
259different types of sensors, public data projects (e.g., the human genome project),
260and captures of audio and video recordings were made possible by a new generation
261of tools with fast-processing engines and NoSQL stores. The data science area
262(a multifocal field consisting of an intersection of mathematics and statistics, com-
263puter science, and domain specific knowledge) also advanced significantly during
264this period, delivering scientific methods, exploratory processes, algorithms, and
265resources that can be used to derive knowledge and insights from data in various
266forms. The IoT and cloud computing technologies ushered in the Analytics 3.0 era,
267allowing for the creation of hybrid technology environments for data storage, real-
268time analysis, and intelligent customer-oriented services. After the countless possi-
269bilities for capitalizing on analytics resources, Analytics 3.0 is also known as the era
270of impact or the era of data-enriched offerings after the endless opportunities for
271capitalizing on analytics services. For creating value in the data economy, Davenport
272(2013) suggested that the following factors need to be properly addressed:

273• Combining multiple kinds of information
274• Adoption of novel information management tools
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275 • Introduction of “agile” analytical methods and machine-learning techniques to
276 generate insights at a much faster rate
277 • Embedding analytical and machine learning models into operational and decision
278 processes
279 • Development of skills and processes for data exploration and discovery
280 • Requisite skills and processes to develop prescriptive models that involve large-
281 scale testing and optimization and are a means of embedding analytics into key
282 processes
283 • Leveraging new approaches to decision-making and management

284 The aim of the Analytics 4.0 era, also known as the era of consumer-controlled
285 data, is to give consumers complete or partial control over data. There are various
286 possibilities for automating and augmenting human/computer communications by
287 integrating machine translation, smart reply, chat-bots, and virtual assistants, all of
288 which are associated with the Industry 4.0 trend.
289 The selection of an appropriate semantic processing model (i.e., vocabularies,
290 taxonomies, and ontologies that facilitate interoperability) (Mishra & Jain, 2020) and
291 analytical solution is a challenging problem and depends on the business issues of
292 the targeted domain, for instance, e-commerce, market intelligence, e-government,
293 healthcare, energy efficiency, emergency management, production management,
294 and/or security.

295 4.4 Semantics and Business Intelligence Applications

296 The topic semantic intelligence brings together the efforts of AI, machine learning,
297 and SW communities. The choice of an effective processing model and analytical
298 approach is a difficult task that is influenced by the business concerns of the targeted
299 domain, for instance, risk assessment in banks and the financial sector, predictive
300 maintenance of wind farms, sensing and cognition in production plants, and auto-
301 mated response in control rooms. The integration of advanced analytical services
302 with semantic data lakes is a complex and hot research topic (see the eight-step
303 process in Fig. 4.2). Although the aim of semantics is to make data and processes
304 understandable to machines, the goal of semantic intelligence is to make business
305 intelligence solutions accessible and understandable to humans. Natural language
306 processing and semantic analysis, for example, are used to understand and address
307 posted questions while incorporating semantic knowledge in human-machine inter-
308 faces (digital assistants). In this case, natural language processing methods combine
309 statistical and linguistic methods with graph-based AI.

310 Example This example presents the process of creating and publishing a linked
311 drug dataset based on open drug datasets from selected Arabic countries. The drug
312 dataset has been integrated in a form of a materialized KG (Lakshen et al., 2020).
313 The overall goal is to allow the business user to retrieve relevant information about
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314 drugs from the local company data store and other open-source datasets. To this aim,
315 an intelligent digital assistant is needed.
316 The pharmaceutical/drug industry was among the first that validated linked data
317 principles and standards recommended by the W3C consortium and used the
318 approach for precise medicine. Table 4.3 briefly describes the necessary tasks for
319 development of a semantic data lake and leveraging AI with KGs.

320 4.5 Role of Semantics in (Big) Data Tools

321 Different keywords are used to name semantic techniques and technologies in the
322 literature and in practice: semantic annotation tools and content indexing and
323 categorization tools; semantic data processing and integration platforms; RDF triple
324 storage systems; SW services (Patel & Jain, 2019) and SOA middleware platforms;
325 semantic annotation tools, content indexing, and categorization tools; semantic
326 search and information retrieval technologies; semantic textual similarity methods,
327 linguistic analysis and text mining algorithms, and ontology-mediated portals;
328 ontological querying/inference engines and rule-based engines; ontology learning
329 methods; and ontology reasoners. In their study of the market value of semantic
330 technologies, Davis et al. (2004) defined the following four major functions 50 com-
331 mercial companies offered in 2004:

332 • Discover, acquire, and create semantic metadata
333 • Represent, organize, integrate, and inter-operate meanings and resources
334 • Reason, interpret, infer, and answer using semantics
335 • Provision, present, communicate, and act using semantics

336 Based on the analysis of the functionalities of more than 50 SW tools, Janev and
337 Vraneš (2011) classified main semantic technology segments into semantic model-
338 ing and creation, semantic annotation, semantic data management and integration,
339 semantic search and retrieval, semantic collaboration including portal technologies,
340 and learning and reasoning. Furthermore, Janev et al. (2020) discussed challenges
341 related to big data tools and points to a repository of big data tools; see the results of
342 the project LAMBDA—Learning, Applying, Multiplying Big Data (Janev, 2020).
343 We have categorized the tools into 12 categories (see also Table 4.4): Cloud
344 Marketplaces, Hadoop as a Web Service/Platform, Operational Database Manage-
345 ment Systems, NoSQL/Graph databases, Analytics Software/System/Platform, Data
346 Analytics Languages, Optimization Library for Big Data, Library/API for Big Data,
347 ML Library/API for Big Data, Visualization Software/System, and Distributed
348 Messaging System.
349 The authors’ analysis highlights that it is important to distinguish between big
350 data processing, where the size (volume) is one of many important aspects of the
351 data, and big data analytics, where semantic processing and use of semantic stan-
352 dards can improve the analysis and produce explainable results.
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3534.6 Summary

354Advances in hardware and software technology, such as the IoT, mobile technolo-
355gies, data storage and cloud computing, and parallel machine learning algorithms,
356have allowed the collection, analysis, and storage of large volumes of data from a
357variety of quantitative and qualitative domain-specific data sources over the last two
358decades. As the authors presented in this chapter, interoperable data infrastructure
359and standardization of data-related technology, including the creation of metadata
360standards for big data management, are needed to simplify and make big data
361processing more efficient. Semantics play an important role, particularly when it
362comes to harnessing domain information in the form of KGs. As the authors’
363analysis showed, in the last decade, especially after the announcement of the Google
364Knowledge Graph, large corporations introduced semantic processing technologies

t4:1Table 4.4 Big data toolsa

Category Tools t4:2

Cloud marketplaces Alibaba Cloud; IBM Cloud; Google Cloud Platform; Oracle
Cloud Marketplace; CISCO Marketplace; Microsoft Azure Mar-
ketplace; AWS Marketplace t4:3

Hadoop as a Web service/
platform

HDInsight; IBM InfoSphere BigInsights; MapR; Cloudera CDH;
Amazon EMR t4:4

Operational database man-
agement systems

IBM (DB2); SAP (SAP HANA); Microsoft (SQL Server);
ORACLE (Database) t4:5

NoSQL/graph databases Hadoop Distributed File System (hdfs); Amazon Neptune neo4j;
TigerGraph; Mapr database; OntoText GraphDB;
AllegroGraph; Virtuoso; Apache Jena; MarkLogic JanusGraph;
OrientDB; Microsoft Azure Cosmos DB; Apache Hbase; Apache
Cassandra; MongoDB t4:6

Stream processing engines Apache Flume; Apache Apex; Amazon Kinesis Streams; Apache
Flink; Apache Samza; Apache Storm; Apache Spark t4:7

Analytics software/system/
platform

SAS Analytics Software & solutions; MatLab; H2O.ai; Accord
framework; Apache Hadoop; Cloudera data platform; VADALog
system; Semantic Analytics Stack (SANSA) t4:8

Data analytics languages Scala; Julia; SPARQL; SQL; R; Python package index (PyPI);
Python t4:9

Optimization library for big
data

Facebook ax; Hyperopt; IBM ILOG CPLEX optimization library t4:10

Library/API for big data TensorFlow serving; MLLIB; BigML; Google Prediction API;
Azure machine learning; Amazon machine learning API; IBM
Watson programming with Big Data in R t4:11

ML library/API for big data Caffe.ai; Apache MXNet; Xgboost; PyTorch; Keras; TensorFlow t4:12

Visualization software/
system

Oracle Visual Analyzer; Microsoft Power BI; DataWrapper;
QlikView; Canvas.js; HighCharts; Fusion Chart; D3; Tableau;
Google chart t4:13

Distributed messaging
system

Apache Kafka t4:14

t4:15aLAMBDA Catalogue available at https://project-lambda.org/tools-for-experimentation
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365 to provide scalable and flexible data discovery, analysis, and reporting. The semantic
366 data lake approach has been exploited to allow uniform access to original heteroge-
367 neous data, while the semantic standards and principles are used for:

368 • Representing (schema and schema-less) data
369 • Representing metadata (about documentation, provenance, trust, accuracy, and
370 other quality properties)
371 • Modeling data processes and flows (i.e., representing the entire pipeline making
372 data representation shareable and verifiable)
373 • Implementing standard querying and analysis services

374 However, transforming big data into actionable big knowledge demands scalable
375 methods for creating, curating, querying, and analyzing big knowledge. The authors’
376 study on big data tools reveals that there are still open issues that impede a
377 prevalence usage of graph-based frameworks over more traditional technologies
378 such as relational databases and NoSQL stores. For instance, tools are needed for
379 federations of data sources represented using the RDF graph data model for ensuring
380 efficient and effective query processing while enforcing data access and privacy
381 policies. Next, the integration of analytic algorithms over a federation of data sources
382 should be assessed and evaluated. Finally, quality issues that are more likely to be
383 present, such as inconsistency and incompleteness, should be properly addressed and
384 integrated in the reasoning processes.
385 Along with the discussion of the emerging big data tools on the market (catego-
386 rized into 12 groups), in this chapter, the authors summarized an eight-step approach
387 for the utilization of KGs for semantic intelligence. Hence, it is possible to conclude
388 that there is a broad spectrum of applications in different industries where semantic
389 technologies and machine-learning methods are used for managing actionable
390 knowledge in real-world scenarios.
391 Once the abovementioned issues are effectively addressed, promising results
392 from semantic intelligence services and applications are expected, for instance, for
393 personalized healthcare, financial portfolio optimization and risk management, and
394 big data-driven energy services.

395 Review Questions
396 • What is the difference between open data, big data, linked data, and smart data?
397 • What are the biggest challenges that enterprises face nowadays?
398 • What are key requirements for development of big data-driven pipelines for
399 transforming big data into actionable knowledge?
400 • How does the data analytics field develop over time?
401 • What is the process of development of a semantic data lake?

402 Discussion Questions
403 • How can we categorize big data tools? Which technologies are needed for
404 transforming big data into actionable big knowledge?
405 • Elaborate challenges for big data ecosystems, e.g., energy domain.
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406• How stable are W3C standards? How often are they used for building semantic
407intelligence applications? Do you know other standards for building semantic
408applications?
409• Discuss extraction rules and standards for different data sources.

410Problem Statements for Young Researchers
411• Compare the data warehousing and data lakes concepts.
412• Discover different ways for building semantic data lakes.
413• How can we leverage AI with KGs?
414• How can quality issues in big data (inconsistency and incompleteness) be
415addressed and integrated in the reasoning processes?
416• How can we improve the explainability of AI systems with knowledge graphs?
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