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The Challenges of Knowledge Graphs (KGs)   

The represented knowledge can be incorrect.  

The represented knowledge can be  incomplete.  

 

 

Knowledge Graph Creation  
Methods   
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Knowledge Graph Refinement  

ML-based Approaches for Completion of Knowledge Graphs  

Error detection Approaches for Correction of Knowledge Graphs 
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Graph Completion with Machine Learning  

Hypothesis: ML can help to learn new knowledge from already existing ones!  

  
Machine learning builds a mathematical model based on sample data   

( set of attributes as training data D_n with n samples). 

 

 

 

 
 

Supervised Learning  Un-Supervised Learning  Semi-Supervised Learning  
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Ml-based Mathematical Model for Learning 

Mathematical  
Model 

Input Output 

f (        X          )      =      Y 
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Requirement  

The input and output of such a Mathematical Model should be numeric! 

 

  

 

[x_1,...,x_n] 
 
 

Input data                       embed                            vectors    
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What is an embedding? 

Wikipedia: In mathematics, an embedding is one instance of some 
mathematical structure contained within another instance, such as a 
group that is a subgroup.   

Google: An embedding is a relatively low-dimensional space into 
which you can translate high-dimensional vectors.  

 

 
A way of mapping SOMETHING to Vectors/Matrix! 

 
Graph 

Image Text 
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Word Embedding  

Knowledge 

Graph 

Belgrade 

Germany 

Knowledge  [1.2,1.3,2.0] 
Graph          [1.4,1.0,1.9] 
Neural         [3.3,4.3,2.5] 
Network       [3.1,2.9,2.4] 

Neural 

Network 

Berlin Serbia 
Berlin         [1.2,1.3,2.0] 
Germany    [1.4,1.0,1.9] 
Belgrade    [3.3,4.3,2.5] 
Serbia        [3.1,2.9,2.4] 
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Graph Embedding  

f (                                  )    =       

0.55 0.66 
       . 
       . 
       . 
0.75 0.16 
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Node Embedding  

 Vector Representation 
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Edge Embedding  

 Vector Representation 
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Knowledge Graph Embedding  

 Vector Representation Symbolic Representation 
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Knowledge Graph Embedding Models  

Goal: Predicting missing links between nodes! 

 

KGE 
Model 

Input 
Triples in vectors 

Output  
Ranked 

Predicted Links  
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Learning Steps of a KGE 

Assign random vectors to each entity instance or 
relation! 

 Give these vectors to the KGE model 

 

 
Let the model learn the embeddings 

 

 
Return degree of plausibility  

 

 
Optimize the learned embeddings  
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Data Sets/KGs 

Embeddings 

Score 

Loss 

KGE 

[0.1, -0.4, 1, ...] 
 Vectors, Matrix, ... 

Designing Knowledge Graph Embeddings  
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Datasets/KGs 
Dataset: Knowledge Graph  

Triple facts are shown in the form of (h,r,t) 

Vectors are shown in the form of (h, r, t) 

 

(Barack Obama, WasBornIn, Honolulu) 

(Barack Obama, WasBornIn, Honolulu)* 

x_i= (h, r, t)*  

y_i= 1 (True), 0(False) with a degree of plausibility. 
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Learning Datasets 

Train: Use to learn embeddings.  

Test: Check the correctness of the results on one gold standard.  

Validation: Check the behavior of the model in different situations.   

 

Negative Sampling: let the model also learn from incorrect samples.  
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How to arrange the vectors? 

 Vector Representation Symbolic Representation 
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Score function 

Provides the degree of correctness for a triple: 

 
TransE Score Function  
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Purpose: Vector Arrangements  

TransE Embedding Model:  subject + property = object  

 

 

TransE KGE 
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Purpose: Vector Arrangements  

 subject     property = object   

 (    is an operator which applies rotation) 

 

 

RotatE KGE 

RotatE Score Function  
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Optimization 

To optimize the random vectors in a way that the scores are closer to 
what we have in the KG and the model knows about them!  

In order to design an optimizer, we need to know what do we want to 
optimize with a criteria. 
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Loss Function 

Adjust the embedding vectors for entities and relations i.e., (h, r, t) to 
enforce the criteria. 

Margin Ranking Loss:   

Positive Sample Negative Sample 

Margin 
+ 

+ + 
- 

- - 
(Barack Obama, WasBornIn, Honolulu) (Barack Obama, WasBornIn, Berlin) 

Sahar Vahdati - Knowledge Graph Embeddings - BDA School 2020 



24 

Data Sets/KGs 

Embeddings 

Score 

Loss 

KGE 

[0.1, -0.4, 1, ...] 
 Vectors, Matrix, ... 

Designing Knowledge Graph Embeddings  
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Example use-case  
Co-author Recommendation 
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Heterogeneous Scholarly Metadata and Enquiries! 
● Enormous resources / metadata providers 
● Different types  
● Different formats  
● Large-scale metadata  
● Diverse  
● Broad scientific domains 
● Value and importance 
● Increasing publishing rate 
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Machine Learning Support for Scholarly Domain 

Link prediction for recommendation-based services: 

• Who can be the best candidate for collaboration? 
• Which group/university can be the best candidate for collaboration? 
• Which groups in different fields can work on an effective research together?   
• …  

 

ML-based approaches for link prediction: Knowledge Graphs Embedding 

Many metaresearch enquiries of scholars remain unrevealed.  
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Ontology of an Scholarly Knowledge Graph 
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Knowledge Graphs Embedding Models  

Loss Functions 

TransE: 

RotatE: 
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Loss function 

Loss function helps to obtain embedding vectors for entities and relations i.e., 
(h, r, t). 

 
Margin Ranking Loss:   

Positive Sample Negative Sample 

Margin 
+ 

+ + 
- 

- - 
(Yoshua. Bengio, IsCoauthorOf, LeCun) (Yoshua Bengio, IsCoauthorOf, Albert Einstein) 
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Loss function 

Problems of Margin Ranking loss: 
• Margin sliding: there are infinite solutions for the score of positive and 

negative samples 
 
 
 
 
• Embeddings are adversely affected by false negative samples. 
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Loss function 

Limit-based scoring loss:  
  

 
Margin Ranking Loss:   

Positive Sample Negative Sample 

Margin 
+ 

+ 

+ 
- 
- 

- 
(Yoshua. Bengio, IsCoauthorOf, LeCun) (Yoshua Bengio, IsCoauthorOf, ISWC) 

Upper bound of  
positive sample 
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Challenge of Co-author Recommendation  
 

Problems: 
● Many to Many relation  

○ Coauthor relation 
○ Citations 

● In the existence of many-to many relations, the rate of false negative samples increases. 
 
 
● Generating negative samples are based on a random corruption. 
● Assuming that N= 1000 is the number of all authors in a SKG, the probability of generating 

false negatives for an author with 100 true or sensible but unknown collaborations becomes 
100/1000= 10%.   
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Optimization of Margin ranking loss 
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Soft Marginal Loss 
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Experiments and Results   

Filtered mean rank 
Filtered hits@1o 

Filtered mean 
reciprocal rank 
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Experiments and Results   
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Collaboration Recommendations 
Left Recommendations 

Right Recommendations  
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More Application of KGEs 

Question Answering Systems  

Recommendation Systems  

Prediction Systems 

. 

. 

. 
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Thank you!  
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