
Maria-Esther Vidal
Scientific Data Management Group TIB Leibniz
Information Centre for Science and Technology University
Library & L3S Research Centre Leibniz University of
Hannover, Germany
Universidad Simón Bolívar, Venezuela

Federated Query Processing over
RDF Graphs

Page 2

Motivating Example- Available Data Sources

Biological
Data

Chemical
Data

Genomic
Data

Diverse data sources potentially incomplete and noisy

Page 3

Motivating Example- Data Sources in
Heterogeneous Formats

Data sources is diverse formats, e.g., XML, CSV, JSON

Page 4

Impacting Data Complexity Dimensions

Page 5

Motivating Example

Query: Drugs with the active substance Simvastatin:
○ Name of possible drug targets,
○ Chemical formula of a drug,
○ Side effects, and
○ Disease Name

Page 6

Interoperability Issues During Query Processing

Drug

Drug_Target

Target

dailymed:798 rdf:type dailymed:drugs ;
 dailymed:activeIngredient dming:Simvastatin .
 owl:sameAs sider:54454 .
 dailymed:genericDrug drugbank:DB00641 ;
 dailymed:possibleDiseaseTarget diseasome:319,
 diseasome:2839,
 diseasome:2175 .

accNum DrugName formula pubChemId

DB00641 simvastatin C25H38O5 54454
DB00295 Morphine C17H19NO3 5288826

side_effects.csv
DrugID,UMLS_ID,SideEffectName
54454,C0009806,Constipation
54454,C0236071,Throat tightness
54454,C0156404,Menstruation irregular
191,C0012833,Dizziness
191,C0232487, Abdominal discomfort
191,C1956346,Coronary artery disease

ID Name Gene UniprotID

631 3-hydroxy-3-methylglutaryl-
coenzyme A reductase

HMGCR P04035

1882

Ras-related C3 botulinum
toxin substrate 1

RAC1 P63000

7683 Mu-type opioid receptor OPRM1 P35372

Drug Target

DB00641 631
DB00641 1882
DB00295 7683

[{

 "diseaseID": "319",
 "name": "Diabetes_mellitus",
 "associatedGene": ["ACE", "ABCC8", "TCF1"]
 },{

 "diseaseID": "2839",
 "name": "Kaposi sarcoma, susceptibility to, 148000",
 "associatedGene": ["IL6", "IFNB2", "BSF2"]
 }]

drug_names.csv
ID,DrugName
54454,simvastatin
191,adenosine

Page 7

Query Over Heterogeneous Data Sources

● Query: Drugs with the active substance Simvastatin:
○ Name of possible drug targets,
○ Chemical formula of a drug,
○ Side effects, and
○ Disease Name

● Select the data sources
required to execute a
query, and

● Rewrite the query in
terms of the selected
data sources

Agenda

1. Distributed Data Management Systems
2. Data Integration Systems
3. Adaptive SPARQL Query Engines
4. Hybrid SPARQL Query Engines

Page 9

Dimensions of Distributed Database Systems [*]

Distribution: Physical
distribution of the data
over multiple sites.

Autonomy: Distribution of
the control; degree to which
individual systems can
operate independently.

Heterogeneity: Different
forms ranging from
hardware, differences in
network protocols, data
models, query languages.

Distribution

[*] Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems (Third Edition). Springer, 2011.

Page 10

Client-Server Systems

Distribution
Client-Server Systems:
● Clients run user

applications and
interfaces.

● Servers run data
management tasks,
e.g., query processing
and storage.

Page 11

Client-Server Systems

Server Engine

Client

Queries Query
Answers

Server Engine

Page 12

Peer-to-Peer Systems

Distribution Peer-to-Peer Systems:
● Massive distribution
● May used different data

models.
● Each system manages a

different dataset.
● Peers can

communicate.

Page 13

Peer-to-Peer Systems

Peer Peer

Peer

Peers communicate.

Page 14

Federated Query Systems

Distribution FDM Systems:
● Fully autonomous and

have no concept of
cooperation.

● May use different
data models.

● Each system manages
a different database.

Page 15

Federated Query Systems

Federated
Engine

Page 16

Data Integration Systems

A data integration system DIS=<O,S,M>:
• O is a set of general concepts in a general schema (virtual)
• S is a set of {S1,..,Sn} of data sources
• M is a set of mappings between sources in S and general

concepts in O

cf. Lenzerini 2002

Page 17

Data Integration Systems

Data Integration
System

Centralized Distributed

Homogeneous

Heterogeneous

Data Integration
System

Data Integration
System

Wrapper Wrapper Wrapper

Data Integration
System

Page 18

Data Integration Systems

Data Integration
System

Centralized Distributed

Homogeneous

Heterogeneous

Data Integration
System

Data Integration
System

Wrapper Wrapper Wrapper

Data Integration
System

✽ ✽

✽ Existing Data Integration Systems for Querying Processing over RDF

Page 19

Query Rewriting Problem

Query Rewriting Problem (QRP):
● A query Q is a conjunctive query

over predicates in O
● Find a conjunctive query Q’

expressed in sources in S based
on rules in M, such that
○ Evaluation of Q’ produces only

answers of Q
○ Evaluation of Q’ produces all

the answers of Q given the
sources in S

Data Integration
System

Wrapper Wrapper Wrapper

Theorem [Levy et al. 1995]
To check if there is a valid rewriting Q’ of Q with at
most the same number of goals as Q is an NP-
complete problem.

Page 20

Challenges for Query Processing

Given a query Q in a formal language, i.e., SPARQL
● Identify the relevant data sources for Q (Source Selection)
● Decompose Q into subqueries on relevant data sources (Query Decomposition)
● Plan evaluation of subqueries against relevant data sources (Query Planning)
● Merge data collected from relevant data sources (Query Execution)

Relevant data sources for Q: minimal set of sources S
from a federation of source F such that the answer of
evaluating Q in S is the same than evaluating Q in F

Page 21

Federated Query Processing Problem

● Given a Data Integration System DIS=<O,S,M>
and a query, Q, expressed over O. Let S* be the
virtual dataset of S

● Find a query rewriting, Q’ over S, that:
○ Maximize answer completeness,

 [[Q]]S* = argmaxQ’ ∈ RW(Q) [[Q’]]S

○ Minimize execution time,
 cost = argminQ’∈ RW(Q) cost(Q’)

Data Integration
System

Wrapper Wrapper Wrapper

S*

Page 22

Federated Query Processing Problem

● Given a Data Integration System DIS=<O,S,M>
and a query, Q, expressed over O. Let S* be the
virtual dataset of S

● Find a query rewriting, Q’ over S, that:
○ Maximize answer completeness,

 [[Q]]S* = argmaxQ’ ∈ RW(Q) [[Q’]]S

○ Minimize execution time,
 cost = argminQ’∈ RW(Q) cost(Q’)

Data Integration
System

Wrapper Wrapper Wrapper

S*

Page 23

Federated Engine Architecture

Page 24

Our Running Example

Query: Drugs with the active substance Simvastatin:
○ Name of possible drug targets,
○ Chemical formula of a drug,
○ Side effects, and
○ Disease Name

Page 25

Source Selection & Decomposition

● Query: Drugs with the active substance Simvastatin:
○ Name of possible drug targets,
○ Chemical formula of a drug,
○ Side effects, and
○ Disease Name

S1 S2 S3 S4

S1

S2
S3

S4

Page 26

Federated Engine Architecture

Page 27

Query Planning Over Heterogeneous Data Sources

Query Plan

Page 28

Join Orderings

Page 29

Join Orderings

Page 30

Join Orderings

Page 31

Query Processing Steps

Query Processing is divided
into three major steps:
Statistics generation.
Query optimization.
Query Execution.

Page 32

The Optimize-Then-Execute Paradigm

Traditional Query Processing techniques:
● Parse a declarative query.
● Generate an intermediate representation of the query (Query

Blocks).
● Produce an efficient logical and physical plan; minimize disk I/O

access.
● Execute the query plan without making runtime decisions.

A logical plan is a tree
● Non-leaf nodes correspond to operations of in an algebra (e.g., the relational algebra)
● Leaf nodes correspond to relations or subqueries to be executed over a data source

A physical plan is a logical plan
● Non-leaf nodes are annotated with the algorithms used to execute the algebra

operators
● Leaf nodes are annotated with the technique used to access the relations of the

subquery

Page 33

Traditional Query Optimizer

Page 34

Traditional Query Optimizer

Page 35

Traditional Query Optimizer

Page 36

Traditional Query Optimizer

Page 37

Traditional Query Optimizer

Page 38

Traditional Query Optimizer

Page 39

Traditional Query Optimizer

Page 40

Traditional Query Optimizer

Page 41

Traditional Query Optimizer

Page 42

Federated SPARQL Query Engines

Web-access interfaces that allow for
querying RDF data:
● SPARQL Endpoints: respect

SPARQL protocol, i.e., any
SPARQL query

● Triple Pattern Fragments: limited
query capabilities, i.e., only one
triple pattern

Data Integration
System

Challenges: Query processing is impacted by different
parameters, e.g., query capabilities, data fragmentation,
dataset size and connectivity, and query selectivity

Federation of RDF Data Sources

Page 43

Federated SPARQL Query Engines

LILAC[5] FEDRA[6]

Fed-DESATUR[3]

MULDER[10]

Extensions

DAW[9]
HIBISCUS[15]

ANAPSID[1]

SPLENDID [3]

[4]

[12]

Data Integration
System

[7]

Page 44

Impacting Data Complexity Dimensions

Page 45

Hybrid Federated Query Engines

45

Query Optimizer

Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer: Ontario: Federated Query Processing Against a Semantic Data Lake.
DEXA (1) 2019

Source Selection & Query Decomposition

Query Optimizer

Execution Strategies

SPARQL Query Q

Page 46

Hybrid Federated Query Engines

46

Source Selection & Query Decomposition
over Heterogeneous Sources

Hybrid Execution Strategies
over Heterogeneous Sources

Query Optimizer

SPARQL Query Q

Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer: Ontario: Federated Query Processing Against a Semantic Data Lake.
DEXA (1) 2019

Source Selection & Query Decomposition

Query Optimizer

Execution Strategies

SPARQL Query Q

Page 47

● Benchmark:
○ Life Science Linked Open Data (LSLOD)

○ 10 RDF Data Source

○ 10 Simple Queries

■ UNION, OPTIONAL, DISTINCT

■ 3 - 8 triple patterns

■ 2 - 4 star-shaped sub-queries

Experimental Setup

#triples #subjects #predicates #objects RDF file size

96.10 M 8.32 M 742 27.47 M 16.0 GB

 A. Hasnain, Q. Mehmood, S. Sana e Zainab, M. Saleem, C. Warren, D. Zehra, S. Decker, and D.
Rebholz-Schuhmann. Biofed: federated query processing over life sciences linked open data. Journal of
Biomedical Semantics, 8(1):13, Mar 2017.

Page 48

● 23 Docker containers
○ 10 RDF sources (Virtuoso 6.01.3127)
○ 10 RDB sources (MySQL 5.7)
○ Three engines (FedX, MULDER,

Ontario)
● Metrics:

○ Execution time: Time elapsed
between query submission and
retrieval of last answer

Experimental Setup

CI: Star-shaped subqueries with no
instantiations or filter clauses

CII: Star-shaped subqueries with no
instantiations or filter clauses, and defined
over an RDF class implemented by joining
several relational tables in a data lake

CIII: Star-shaped subqueries with
instanstiations in object variables

 CIV: Star-shaped subqueries with
instantiations or filter clauses, and defined
over an RDF class implemented by joining
several relational tables in a data lake

Experimental Configuration Types of Subqueries

Page 49

Goal: Evaluate the impact of different subqueries--star-shaped groups
(SSQs)-- on the performance of a query engine.

Exp I: Impact of Star-shaped Groups

CI

CI
CI

CI

CII
CII

CIV CIV

CIII CIV

CIV

CIV

RDB scans a relation or a set of relations,
while an RDF engine scans over all data. Thus,
RDB engines outperform RDF engines

RDB only has indexes on primary keys, while
an RDF engine has indexes over combinations
of subject, predicate, and object. Thus, RDF
engines outperform RDB engines

Page 50

Goal: Performance of Ontario engine over RDF data sources and the
overhead introduced while considering heterogeneity

Exp II: Impact of Considering Heterogeneity

Ontario pays the price of considering heterogeneous data
sources. Ontario outperforms both FedX and MULDER by
generating efficient plans and using optimization rules tailored
for RDF sources on the rest of the queries

Page 51

Goal: Performance of Ontario over heterogeneous sources, i.e.,
RDF and RDB

Exp III: Impact of Heterogeneity

Characteristics of the queries impact on the
performance of the federated query engine. Ontario
is able to identify according to the data source
implementations which is the most effective plan.

Page 52

Data Evolution….

Data
Entity
Changes, e.g.,
Completeness

Schema
Changes

Changes in Data
Source
Performance
and Availability

Data Distribution
Changes

Page 53

Required Solutions to Support Evolution

Source Evolution

Selecting the sources
according to their current
conditions and availability

Querying Evolving Data

Environment
Evolution

Executing queries
according to current
conditions of the
environment

Data Evolution
Considering the status of the
data, e.g., completeness, during
the execution of the query

Knowledge
Evolution
Considering the evolution
of the knowledge during
the execution of the query

Knowledge
Incompleteness
Considering that unknown
facts may need to be
predicted during query
execution

1

2

3

4

5

Page 54

Impacting Data Complexity Dimensions

Page 55

Ideal Federated Query Engines

● Systems able to change their behavior by learning behavior of data
providers.

● Receive information from the environment.
● Use up-to-date information to change their behavior.
● Keep iterating over time to adapt their behavior based on the

environment conditions.

Page 56

Challenges: Federated Query Processing

Page 57

Adaptive Query Processing

Optimized-Then-Execute Paradigm Adaptive Query Processing

Page 58

Adaptive SPARQL Query Engines

Adapt to Source and Environment Evolution:
▪ Misestimated or missing statistics.
▪ Unexpected correlations.
▪ Unpredictable costs.
▪ Dynamically changing data, workload, and source

availability.
▪ Changes at rates at which tuples arrive from sources

• Initial Delays.
• Slow Delivery.
• Bursty Arrivals.

Page 59

Adaptivity in Federated Query Processing

Adaptive Query Federated Engines are able to:

● Change their behavior by learning the behavior of data
providers

● Receive and exploit information from the environment
● Use up-to-date information to change their behavior
● Keep iterating over time to adapt their behavior based on

the environment conditions

Page 60

Adaptive Federated Query Engines

Re-optimize the original plan
on-the-fly according to the
source conditions

Page 61

Existing Federated SPARQL Query Engines
Ex

is
tin

g
Fe

de
ra

te
d

Q
ue

ry
 E

ng
in

es
 Adaptive Source Selection

Adaptive Query Processing

Granularity of the
Adaptation Adaptation Level

Fine-grained

Coarse-grained

Existing Federated Q
uery Engines

Page 62

Existing Federated SPARQL Query Engines

Ex
is

tin
g

Fe
de

ra
te

d
Q

ue
ry

 E
ng

in
es

 Adaptive Source Selection

Adaptive Query Processing

Identification of Relevant
Sources Based on Current

Conditions

Query Decomposition Based on
Current Conditions

Adaptive Operators, e.g.,
GJoin[1], SMJoin [13]

Adaptive Query Engines, e.g.,
Networks of Linked Data

Eddies[2]

Page 63

Adaptivity at Source Selection Level

Source Selection: searching strategies to select the sources
for answering a query according to the real-time source
conditions:

● Schema changes
● Source availability
● Data distribution changes

Page 64

Adaptivity During Source Selection

64

Fine-Grained
Adaptivity

ANAPSID SPLENDID

Coarse-Grained
Adaptivity No Adaptivity

Fed-DESATUR

MULDER DAW
HIBISCUS

LILAC FEDRA

Source Selection techniques that allow for identifying the sources that can be
used to answer a query based on the current conditions of the sources

Page 65

Query Planning Over Heterogeneous Data Sources

Source Selection

Page 66

Existing Federated SPARQL Query Engines

Ex
is

tin
g

Fe
de

ra
te

d
Q

ue
ry

 E
ng

in
es

 Adaptive Source Selection

Adaptive Query Processing

Identification of Relevant
Sources Based on Current

Conditions

Query Decomposition Based on
Current Conditions

Intra-Operator

Inter-Operator

Only adaptivity to changes in the
environment is addressed!!

Page 67

Adaptivity During Query Execution

67

Fine-Grained
Adaptivity

ANAPSID SPLENDID

No Adaptivity

Fed-DESATUR

MULDER

DAW HIBISCUS

LILAC FEDRA

Implement physical operators and query processing techniques to adjust
query schedulers to the conditions of the sources and the network

Network of
Linked Data
Eddies (nLDE)

Page 68

Adaptive Query Engine

Intra-Operator

● Donec risus dolor porta venenatis

Operators able to detect when
sources become blocked or
data traffic is bursty

● Opportunistically produce
results as quickly as data
arrives from the sources

● Results are produced
incrementally

Page 69

Adaptive Query Engine

Intra-Operator

● Donec risus dolor porta venenatis

Operators able to detect when
sources become blocked or
data traffic is bursty

● Opportunistically produce
results as quickly as data
arrives from the sources

● Results are produced
incrementally

M. Acosta, M.E. Vidal, T. Lampo, J. Castillo, E. Ruckhaus: ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints. ISWC, 2011.

GJoin [Acosta
and Vidal et al.
2011]

Page 70

Intra-Operator

ANAPSID intra-operator strategies are able to produce all the results
faster than state-of-the-art join operators in presence of delays

Page 71

Adaptive Query Engine

Intra-Operator

● Donec risus dolor porta venenatis

Operators able to detect when
sources become blocked or
data traffic is bursty

● Opportunistically produce
results as quickly as data
arrives from the sources

● Results are produced
incrementally

SMJoin [Galkin et al. 2017]

M. Galkin, K. M. Endris, M. Acosta, D. Collarana, M.-E.r Vidal, S. Auer: SMJoin: A Multi-way Join Operator for SPARQL Queries. SEMANTICS 2017:

.

Page 72

Adaptive Query Engine

Intra-Operator

● Donec risus dolor porta venenatis

Operators able to detect when
sources become blocked or
data traffic is bursty

● Opportunistically produce
results as quickly as data
arrives from the sources

● Results are produced
incrementally

SMJoin [Galkin et al. 2017]

M. Galkin, K. M. Endris, M. Acosta, D. Collarana, M.-E.r Vidal, S. Auer: SMJoin: A Multi-way Join Operator for SPARQL Queries. SEMANTICS 2017:

.

SMJOIN SMJOIN

Page 73

Adaptive Query Engine

Intra-Operator

● Donec risus dolor porta venenatis

● Produce an answer as soon as
it is computed

● Can keep producing
intermediate results even
when data a source becomes
blocked

Page 74

Adaptive Query Engine

Intra-Operator

● Donec risus dolor porta venenatis

● Produce an answer as soon as
it is computed

● Can keep producing
intermediate results even
when data a source becomes
blocked

M. Acosta, M.E. Vidal: Networks of Linked Data Eddies: An Adaptive Web
Query Processing Engine for RDF Data. ISWC 2015

Page 75

Existing Federated SPARQL Query Engines

Ex
is

tin
g

Fe
de

ra
te

d
Q

ue
ry

 E
ng

in
es

 Adaptive Source Selection

Adaptive Query Processing

Identification of Relevant
Sources Based on Current

Conditions

Query Decomposition Based on
Current Conditions

Adaptive Operators, e.g.,
GJoin[1], SMJoin [13]

Adaptive Query Engines, e.g.,
Networks of Linked Data

Eddies[2]

Only adaptivity to changes in the
environment is addressed!!

Page 76

Evaluation

Dataset: DBpedia 2015 (HDT on top of TPF server), 837M triples

Benchmark 1: 14 high-selective queries (<1000 int. res.)

Benchmark 2: Four low-selective queries (>1000 int. res.)

Metrics:
• Execution Time, ms
• Completeness over time, %
Compared tools:
● TPF: triple pattern fragment client [7]
● nLDE: network of Linked Data Eddies [2]
● SMJoin: multi-way join operator for SPARQL [13]

Page 77

Benchmark 1: High Selective Queries

An adaptive approach like SMJoin outperforms other approaches in high-
selective queries that produce small number of intermediate results

Page 78

Benchmark 2: Low Selective Queries

•SMJoin yields the first answer at about the same time as nLDE
•SMJoin has to process more intermediate results
•Q2: results are yielded but all intermediate tuples have to be processed

Q1 Q2

Page 79

Benchmark 2: Low Selective Queries

•SMJoin yields the first answer at about the same time as nLDE
•SMJoin has to process more intermediate results

Q3 Q4

Page 80

Benchmark 2: Low Selective Queries

•SMJoin yields the first answer at about the same time as nLDE
•SMJoin has to process more intermediate results

Q3 Q4

Page 81

Evaluation

Dataset: DBpedia 2015 (HDT on top of TPF server), 837M triples

Benchmark 3: 25 queries against DBpedia; basic graph patterns with up to 15
triple patterns.

Metrics:
• Execution Time, ms

Compared tools:
● nLDE: network of Linked Data Eddies
● No Inter-Operator Strategy

Page 82

Evaluation

No Inter-Operator Strategy

Inter-Operator Strategy

Delays simulated with a Gamma distribution (𝛂𝛂=1, 𝛃𝛃=0.3)

Adaptive query processing strategies are able to speed up
query execution in presence of delays

Page 83

Required Solutions to Support Evolution

Source Evolution

Selecting the sources
according to their current
conditions and availability

Querying Evolving Data

Environment
Evolution

Executing queries
according to current
conditions of the
environment

Data Evolution
Considering the status of the
data, e.g., completeness, during
the execution of the query

Knowledge
Evolution
Considering the evolution
of the knowledge during
the execution of the query

Knowledge
Incompleteness
Considering that unknown
facts may need to be
predicted during query
execution

1

2

3

4

5

Page 84

Impacting Data Complexity Dimensions

Page 85

Data Changes….

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id ?stage ?limit
 WHERE {
 ?bm a iasis:LungCancerBiomarker .
 ?id iasis:associated ?bm .
 ?bm iasis:associated ?obs .
 ?bm iasis:limit ?limit .
 ?bm iasis:stage ?stage
 }

Lung Cancer Biomarkers?

iasis:CYFRA-21-1 iasis:50

iasis:NSE iasis:70

iasis:CYFRA-21-1 iasis:70

iasis:II

iasis:III

iasis:III

http://iasis/vocab/

Page 86

Data Changes….

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id ?stage ?limit
 WHERE {
 ?bm a iasis:LungCancerBiomarker .
 ?id iasis:associated ?bm .
 ?bm iasis:associated ?obs .
 ?bm iasis:limit ?limit .
 ?bm iasis:stage ?stage
 }

Lung Cancer Biomarkers?

iasis:CYFRA-21-1 iasis:50

iasis:NSE iasis:70

iasis:CYFRA-21-1 iasis:70

iasis:II

iasis:III

iasis:III

http://iasis/vocab/

Page 87

Hybrid Federated Query Engines

Source Selection & Query Decomposition

Hybrid Execution Strategies
 Crowd Microtask Manager

Query Optimizer

SPARQL Query Q

M. Acosta, E. Simperl, F. Flöck, M.-E. Vidal: HARE: A Hybrid SPARQL Enhancing answer completeness of SPARQL queries via
crowdsourcing. J. Web Sem. 45: 41-62 (2017)

Crowd

Source Selection & Query Decomposition

Query Optimizer

Execution Strategies

SPARQL Query Q

Page 88

Hybrid Query Processing

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id
 WHERE {
 ?bm a iasis:LungCancerBiomarker .
 ?bm iasis:associated ?obs .
 ?id iasis:associated ?bm .
 ?bm iasis:stage ?stage
}

Crowd

PREFIX iasis:<http://iasis/vocab/>
SELECT ?limit
 WHERE {
?bm iasis:limit ?limit .
 ?bm iasis:stage ?stage
 ?id iasis:associated ?bm .

PREFIX iasis:<http://iasis/vocab/>
SELECT ?id ?stage ?limit
 WHERE {
 ?bm a iasis:LungCancerBiomarker .
 ?id iasis:associated ?bm .
 ?bm iasis:associated ?obs .
 ?bm iasis:limit ?limit .
 ?bm iasis:stage ?stage

 }

Lung Cancer Biomarkers?

http://iasis/vocab/
http://iasis/vocab/
http://iasis/vocab/

Page 89

HARE: A Hybrid Query Engine

Crowd

● Completeness model to estimate dataset
completeness

● Crowd knowledge bases to capture crowd
answers about missing data

● Query engine that combines knowledge in
knowledge bases and estimates from the
completeness model to decompose and
plan sub-query execution

● Microtask manager that exploits metadata
to crowdsource subqueries as microtasks
and update the knowledge bases
according to the crowd answers

M. Acosta, E. Simperl, F. Flöck, M.-E. Vidal: HARE: A Hybrid SPARQL Enhancing answer completeness of SPARQL queries via
crowdsourcing. J. Web Sem. 45: 41-62 (2017)

Source Selection & Query Decomposition

Hybrid Execution Strategies
 Crowd Microtask Manager

Query Optimizer

SPARQL Query Q

Page 90

HARE Microtasks

Metadata is utilized by the
microtask manager to
automatically generate well-
described crowd tasks
Microtasks are submitted to
crowdsourcing platforms,
e.g., CrowdFlower or
Mechanical Turk
Answers collected from the
crowd are represented as
structured data

Page 91

Experimental Study - Set Up

• Benchmark: 50 queries against DBpedia (v. 2014).
- Ten queries in five different knowledge domains:

 History, Life Sciences, Movies, Music, and Sports.

• Implementation details:
- HARE is implemented in Python 2.7.6,
- The crowd is reached via CrowdFlower.

• Crowdsourcing configuration:
- Four different RDF triples per task, 0.07 US$ per task.
- At least three judgments were collected per task.

• Total RDF triple patterns crowdsourced: 502
• Total answers collected from the crowd: 1,609

Page 92

Experimental Evaluation
Sports Music Life Sciences

Movies History
Crowdsourced answers and
answers collected from DBpedia

HARE identifies subqueries with
incomplete answers

Hybrid query processing enhances
query answer completeness

Page 93

Experimental Evaluation

HARE is able to produce more than
75% of the answers at the 12th minute

Movies History

Sports Music Life Sciences

Page 94

Experimental Evaluation

Precision Recall

The crowd exhibits heterogeneous performance within domains.
This supports the importance of HARE triple-based approach.

Page 95

Lessons Learned

● Hybrid data integration systems
allow for the adaptation of the
system to the conditions of the data
sources

● Hybrid data integration systems
enable the integration of
heterogeneous data sources

● Wisdom of the crowd can
contribute the evolution of the
knowledge

Data Integration
System

Wrapper Wrapper Wrapper

Page 96

Required Solutions to Support Evolution

Source Evolution

Selecting the sources
according to their current
conditions and availability

Querying Evolving Data

Environment
Evolution

Executing queries
according to current
conditions of the
environment

Data Evolution
Considering the status of the
data, e.g., completeness, during
the execution of the query

Knowledge
Evolution
Considering the evolution
of the knowledge during
the execution of the query

Knowledge
Incompleteness
Considering that unknown
facts may need to be
predicted during query
execution

1

2

3

4

5

Page 97

Required Solutions to Support Evolution

Source Evolution

Selecting the sources
according to their current
conditions and availability

Querying Evolving Data

Environment
Evolution

Executing queries
according to current
conditions of the
environment

Data Evolution
Considering the status of the
data, e.g., completeness, during
the execution of the query

Knowledge
Evolution
Considering the evolution
of the knowledge during
the execution of the query

Knowledge
Incompleteness
Considering that unknown
facts may need to be
predicted during query
execution

1

2

3

4

5

Page 98

Future Hybrid Federated Query Engines

Source Selection & Query Decomposition

Hybrid Execution Strategies
 Microtask Manager for Experts

Query Optimizer

SPARQL Query Q

Experts

Source Selection & Query Decomposition

Hybrid Execution Strategies
 Crowd Microtask Manager

Query Optimizer

SPARQL Query Q

Crowd

Page 99

Future Hybrid Federated Engines

Source Selection & Query Decomposition

Hybrid Execution Strategies
 Microtask Manager for Experts

Query Optimizer

SPARQL Query Q

Experts

Source Selection & Query Decomposition

Hybrid Execution Strategies
 Crowd Microtask Manager and

Knowledge Discovery

Query Optimizer

SPARQL Query Q

Crowd
& Experts

Page 100

Data Integration Systems

Data Integration
System

Centralized Distributed

Homogeneous

Heterogeneous

Data Integration
System

Data Integration
System

Wrapper Wrapper Wrapper

Data Integration
System

Existing Approaches have focused on adaptive techniques to
support SPARQL Query Processing over RDF Data Sources

Page 101

Data Integration Systems

Data Integration
System

Centralized Distributed

Homogeneous

Heterogeneous

Data Integration
System

Data Integration
System

Wrapper Wrapper Wrapper

Data Integration
System

Future Approaches require to be focused on techniques to
support data and knowledge evolution of RDF Data Sources

Page 102

Future Hybrid Query Engines

Data Curation

Crowd based techniques able
to exploit “public domain”
knowledge to complete RDF data
sources.

3

RDF Data Sources

Adaptive query processing
techniques able to adjust query
execution schedulers to current
conditions of the data sources.

4

Knowledge Prediction

Knowledge discovery
techniques able to “predict
unknown facts” to complete
RDF data sources..

1
Knowledge Curation

Crowd based techniques able
to exploit “specialized
knowledge” to complete RDF
data sources.

2

Page 104

Our Team at the Scientific Data Management Group

Prof.(Uni. Simon Bolivar)
Dr. Maria-Esther Vidal

Dr. Kemele Endris

Research Assistants

Master Student
Assistants

Supreetha
Hanasoge

Maria Isabel
Castellanos

Ahmad
Sakor

Monica
Figuera

Philipp
Rohde

Samaneh
Jozashoori

Ariam
Rivas

Dr. Ingo Keck

PostDocs

Senior
Researcher

Akhilesh Vyas

Enrique
Iglesias

Gabriela
Ydler

Mohammad
Torabineja
d

William Scott

Katja Bartel

Dr. Farah
Karim

Creative Commons Attribution 3.0 Germany
https://creativecommons.org/licenses/by/3.0/de/deed.en

Contact
Maria-Esther Vidal
Maria.Vidal@tib.eu

Thank you!
Questions

Page 106

References

[1] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, Edna Ruckhaus: ANAPSID: An
Adaptive Query Processing Engine for SPARQL Endpoints. International Semantic Web Conference
(2011)
[2] Maribel Acosta, Maria-Esther Vidal: Networks of Linked Data Eddies: An Adaptive Web Query
Processing Engine for RDF Data. International Semantic Web Conference (2015)
[3] Olaf Görlitz, Steffen Staab: SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions.
COLD (2011)
[4] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, Michael Schmidt: FedX: Optimization
Techniques for Federated Query Processing on Linked Data. International Semantic Web Conference
(2011)
[5] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal: Decomposing federated queries in
presence of replicated fragments. J. Web Sem. (2017)
[6] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal: Federated SPARQL Queries
Processing with Replicated Fragments. International Semantic Web Conference (2015)
[7] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De Vocht, Ben De
Meester, Gerald Haesendonck, Pieter Colpaert: Triple Pattern Fragments: A low-cost knowledge graph
interface for the Web. J. Web Sem.(2016)
[8] Maria-Esther Vidal, Simón Castillo, Maribel Acosta, Gabriela Montoya, Guillermo Palma: On the
Selection of SPARQL Endpoints to Efficiently Execute Federated SPARQL Queries. Trans. Large-Scale
Data- and Knowledge-Centered Systems 25: 109-149 (2016)

106

Page 107

References

[9] Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira, Helena F. Deus, Manfred
Hauswirth: DAW: Duplicate-AWare Federated Query Processing over the Web of Data. International
Semantic Web Conference (2013)
[10] Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther Vidal, Sören
Auer: MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates. International
Conference on Database and Expert Systems Applications (2017)
[11] Muhammad Saleem, Axel-Cyrille Ngonga Ngomo: HiBISCuS: Hypergraph-Based Source Selection
for SPARQL Endpoint Federation. Extended Semantic Web Conference (2014)
[12] SemaGrow: Optimizing federated SPARQL queries Angelos Charalambidis, Antonis Troumpoukis
and Stasinos Konstantopoulos In Proceedings of the 11th International Conference on Semantic Systems
(SEMANTiCS 2015)
[13] Mikhail Galkin, Kemele M. Endris, Maribel Acosta, Diego Collarana, Maria-Esther Vidal, Sören Auer:
SMJoin: A Multi-way Join Operator for SPARQL Queries. SEMANTICS 2017: 104-111
[14] Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer: Ontario: Federated Query
Processing Against a Semantic Data Lake. DEXA 2019: 379-395
[15] Maribel Acosta, Maria-Esther Vidal, York Sure-Vetter: Diefficiency Metrics: Measuring the Continuous
Efficiency of Query Processing Approaches. International Semantic Web Conference, 2017

107

	Federated Query Processing over RDF Graphs
	Motivating Example- Available Data Sources
	Motivating Example- Data Sources in
Heterogeneous Formats

	Impacting Data Complexity Dimensions
	Motivating Example
	Interoperability Issues During Query Processing
	Query Over Heterogeneous Data Sources
	Agenda
	Dimensions of Distributed Database Systems [*]
	Client-Server Systems
	Client-Server Systems
	Peer-to-Peer Systems
	Peer-to-Peer Systems
	Federated Query Systems
	Federated Query Systems
	Data Integration Systems
	Data Integration Systems
	Data Integration Systems
	Query Rewriting Problem
	Challenges for Query Processing
	Federated Query Processing Problem
	Federated Query Processing Problem
	Federated Engine Architecture
	Our Running Example
	Source Selection & Decomposition
	Federated Engine Architecture
	Query Planning Over Heterogeneous Data Sources
	Join Orderings
	Join Orderings
	Join Orderings
	Query Processing Steps
	The Optimize-Then-Execute Paradigm
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Traditional Query Optimizer
	Federated SPARQL Query Engines
	Federated SPARQL Query Engines
	Impacting Data Complexity Dimensions
	Hybrid Federated Query Engines
	Hybrid Federated Query Engines
	Experimental Setup
	Experimental Setup
	Exp I: Impact of Star-shaped Groups
	Exp II: Impact of Considering Heterogeneity
	Exp III: Impact of Heterogeneity
	Data Evolution….
	Required Solutions to Support Evolution
	Impacting Data Complexity Dimensions
	Ideal Federated Query Engines
	Challenges: Federated Query Processing
	Adaptive Query Processing
	Adaptive SPARQL Query Engines
	Adaptivity in Federated Query Processing
	Adaptive Federated Query Engines
	Existing Federated SPARQL Query Engines
	Existing Federated SPARQL Query Engines
	Adaptivity at Source Selection Level
	Adaptivity During Source Selection
	Query Planning Over Heterogeneous Data Sources
	Existing Federated SPARQL Query Engines
	Adaptivity During Query Execution
	Adaptive Query Engine
	Adaptive Query Engine
	Intra-Operator
	Adaptive Query Engine
	Adaptive Query Engine
	Adaptive Query Engine
	Adaptive Query Engine
	Existing Federated SPARQL Query Engines
	Evaluation
	Benchmark 1: High Selective Queries
	Benchmark 2: Low Selective Queries
	Benchmark 2: Low Selective Queries
	Benchmark 2: Low Selective Queries
	Evaluation
	Evaluation
	Required Solutions to Support Evolution
	Impacting Data Complexity Dimensions
	Data Changes….
	Data Changes….
	Hybrid Federated Query Engines
	Hybrid Query Processing
	HARE: A Hybrid Query Engine
	HARE Microtasks
	Experimental Study - Set Up
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Lessons Learned
	Required Solutions to Support Evolution
	Required Solutions to Support Evolution
	Future Hybrid Federated Query Engines
	Future Hybrid Federated Engines
	Data Integration Systems
	Data Integration Systems
	Future Hybrid Query Engines
	Slide Number 103
	Our Team at the Scientific Data Management Group
	Thank you!
Questions�
	References
	References

