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Motivating Example- Available Data Sources 

Biological 
Data 

Chemical 
Data 

Genomic 
Data 

Diverse data sources potentially incomplete and noisy 
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Motivating Example- Data Sources in  
Heterogeneous Formats 
 

Data sources is diverse formats, e.g., XML, CSV, JSON 
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Impacting Data Complexity Dimensions 
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Motivating Example 

Query: Drugs with the active substance Simvastatin:  
○ Name of possible drug targets,  
○ Chemical formula of a drug,  
○ Side effects, and 
○ Disease Name 
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Interoperability Issues During Query Processing 

Drug 

Drug_Target 

Target 

dailymed:798      rdf:type                                             dailymed:drugs ; 
                              dailymed:activeIngredient             dming:Simvastatin . 
                              owl:sameAs                                       sider:54454 . 
                              dailymed:genericDrug                    drugbank:DB00641 ; 
                       dailymed:possibleDiseaseTarget  diseasome:319,  
                                                                                          diseasome:2839,  
                                                                                          diseasome:2175 . 

accNum DrugName formula pubChemId 

DB00641 simvastatin  C25H38O5 54454 
DB00295 Morphine C17H19NO3 5288826 

side_effects.csv 
DrugID,UMLS_ID,SideEffectName 
54454,C0009806,Constipation 
54454,C0236071,Throat tightness 
54454,C0156404,Menstruation irregular 
191,C0012833,Dizziness 
191,C0232487, Abdominal discomfort 
191,C1956346,Coronary artery disease 

ID Name Gene UniprotID 

631 3-hydroxy-3-methylglutaryl-
coenzyme A reductase 

HMGCR P04035 
 

1882
  

Ras-related C3 botulinum 
toxin substrate 1 

RAC1 P63000 

7683 Mu-type opioid receptor OPRM1 P35372 

Drug Target 

DB00641 631 
DB00641 1882 
DB00295 7683 

[{ 

  "diseaseID": "319", 
  "name": "Diabetes_mellitus", 
  "associatedGene": ["ACE", "ABCC8", "TCF1"] 
  },{ 

  "diseaseID": "2839", 
  "name": "Kaposi sarcoma, susceptibility to, 148000", 
  "associatedGene": ["IL6", "IFNB2", "BSF2"] 
 }] 

drug_names.csv 
ID,DrugName 
54454,simvastatin 
191,adenosine 
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Query Over Heterogeneous Data Sources 

● Query: Drugs with the active substance Simvastatin:  
○ Name of possible drug targets,  
○ Chemical formula of a drug,  
○ Side effects, and 
○ Disease Name 

● Select the data sources 
required to execute a 
query, and 

● Rewrite the query in 
terms of the selected 
data sources 



Agenda 

 
1. Distributed Data Management Systems 
2. Data Integration Systems 
3. Adaptive SPARQL Query Engines 
4. Hybrid  SPARQL Query Engines 
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Dimensions of Distributed Database Systems [*] 

Distribution: Physical 
distribution of the data 
over multiple sites. 

Autonomy: Distribution of 
the control; degree to which 
individual systems can 
operate independently.    

Heterogeneity: Different 
forms ranging from 
hardware, differences in 
network protocols, data 
models, query languages.    

Distribution 

[*] Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems (Third Edition). Springer, 2011. 
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Client-Server Systems 

Distribution 
Client-Server Systems:  
● Clients run user 

applications and 
interfaces. 

● Servers run data 
management tasks, 
e.g., query processing 
and storage.    
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Client-Server Systems 

Server  Engine 

Client 

Queries Query 
Answers 

Server  Engine 
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Peer-to-Peer Systems 

Distribution Peer-to-Peer Systems:  
● Massive distribution 
● May used different data 

models. 
● Each system manages a 

different dataset.   
● Peers can 

communicate. 
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Peer-to-Peer Systems 

Peer Peer 

Peer 

Peers communicate. 
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Federated Query Systems 

Distribution FDM Systems:  
● Fully autonomous and 

have no concept of 
cooperation. 

● May use different  
data models. 

● Each system manages 
a different database.    
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Federated Query Systems 

Federated 
Engine 



Page 16 

Data Integration Systems 

A data integration system DIS=<O,S,M>: 
• O is a set of general concepts in a general schema (virtual) 
• S is a set of {S1,..,Sn} of data sources 
• M is a set of mappings between sources in S and general 

concepts in O 
 

cf. Lenzerini 2002 
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Data Integration Systems 

Data Integration 
System 

Centralized Distributed 

Homogeneous 

Heterogeneous 

Data Integration 
System 

Data Integration 
System 

Wrapper Wrapper Wrapper 

Data Integration 
System 
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Data Integration Systems 

Data Integration 
System 

Centralized Distributed 

Homogeneous 

Heterogeneous 

Data Integration 
System 

Data Integration 
System 

Wrapper Wrapper Wrapper 

Data Integration 
System 

✽ ✽ 

✽ Existing Data Integration Systems for Querying Processing over RDF  
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Query Rewriting Problem 

Query Rewriting Problem (QRP): 
● A query Q is a conjunctive query 

over predicates in O 
● Find a conjunctive query Q’ 

expressed in sources in S based 
on rules in M, such that 
○ Evaluation of Q’ produces only 

answers of Q 
○ Evaluation of Q’ produces all 

the answers of Q given the 
sources in S 

 

Data Integration 
System 

Wrapper Wrapper Wrapper 

Theorem [Levy et al. 1995] 
To check if there is a valid rewriting Q’ of Q with at 
most the same number of goals as Q is an NP-
complete problem.  
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Challenges for Query Processing   

Given a query Q in a formal language, i.e., SPARQL 
● Identify the relevant data sources for Q (Source Selection) 
● Decompose Q into subqueries on relevant data sources (Query Decomposition) 
● Plan evaluation of subqueries against relevant data sources (Query Planning) 
● Merge data collected from relevant data sources (Query Execution) 

 

Relevant data sources for Q: minimal set of sources S 
from a federation of source F such that the answer of 
evaluating Q in S is the same than evaluating Q in F 
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Federated Query Processing Problem 

 

● Given a Data Integration System DIS=<O,S,M> 
and a query, Q, expressed over O.  Let S* be the 
virtual dataset of S 

● Find a query rewriting, Q’ over S, that: 
○ Maximize answer completeness, 

       [[Q]]S* = argmaxQ’ ∈ RW(Q) [[Q’]]S  
 

○ Minimize execution time, 
      cost = argminQ’∈ RW(Q) cost(Q’) 

 
 

Data Integration 
System 

Wrapper Wrapper Wrapper 

S* 
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Federated Query Processing Problem 

 

● Given a Data Integration System DIS=<O,S,M> 
and a query, Q, expressed over O.  Let S* be the 
virtual dataset of S 

● Find a query rewriting, Q’ over S, that: 
○ Maximize answer completeness, 

       [[Q]]S* = argmaxQ’ ∈ RW(Q) [[Q’]]S  
 

○ Minimize execution time, 
      cost = argminQ’∈ RW(Q) cost(Q’) 

 
 

Data Integration 
System 

Wrapper Wrapper Wrapper 

S* 
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Federated Engine Architecture 
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Our Running Example 

Query: Drugs with the active substance Simvastatin:  
○ Name of possible drug targets,  
○ Chemical formula of a drug,  
○ Side effects, and 
○ Disease Name 
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Source Selection & Decomposition 

● Query: Drugs with the active substance Simvastatin:  
○ Name of possible drug targets,  
○ Chemical formula of a drug,  
○ Side effects, and 
○ Disease Name 

S1 S2 S3 S4 

S1 

S2 
S3 

S4 
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Federated Engine Architecture 
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Query Planning Over Heterogeneous Data Sources 

Query Plan 
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Join Orderings  
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Join Orderings  



Page 30 

Join Orderings  
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Query Processing Steps 

Query Processing is divided 
into three major steps: 
Statistics generation. 
Query optimization. 
Query Execution. 
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The Optimize-Then-Execute Paradigm 

Traditional Query Processing techniques: 
● Parse a declarative query. 
● Generate an intermediate representation of the query (Query 

Blocks). 
● Produce an efficient logical and physical plan; minimize disk I/O 

access. 
● Execute the query plan without making runtime decisions. 

 
A logical plan is a tree  
● Non-leaf nodes correspond to operations of in an algebra (e.g., the relational algebra) 
● Leaf nodes correspond to relations or subqueries to be executed over a data source 

A physical plan is a logical plan  
● Non-leaf nodes are annotated with the algorithms used to execute the algebra 

operators 
● Leaf nodes are annotated with the technique used to access the relations of the 

subquery 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Traditional Query Optimizer 
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Federated SPARQL Query Engines 

Web-access interfaces that allow for 
querying RDF data: 
● SPARQL Endpoints: respect 

SPARQL protocol, i.e., any 
SPARQL query  

● Triple Pattern Fragments: limited 
query capabilities, i.e., only one 
triple pattern 

Data Integration 
System 

Challenges: Query processing is impacted by different 
parameters, e.g., query capabilities, data fragmentation, 
dataset size and connectivity, and query selectivity 

Federation of RDF Data Sources 
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Federated SPARQL Query Engines  

LILAC[5] FEDRA[6] 

Fed-DESATUR[3] 

MULDER[10] 

Extensions  

DAW[9] 
HIBISCUS[15] 

ANAPSID[1] 

SPLENDID [3] 

[4] 

[12] 

Data Integration 
System 

[7] 
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Impacting Data Complexity Dimensions 
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Hybrid Federated Query Engines 

45 

Query Optimizer 

Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer: Ontario: Federated Query Processing Against a Semantic Data Lake. 
DEXA (1) 2019 

Source Selection & Query Decomposition 

Query Optimizer 

Execution Strategies   

SPARQL Query Q 
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Hybrid Federated Query Engines 

46 

Source Selection & Query Decomposition 
over Heterogeneous Sources 

Hybrid Execution  Strategies  
over Heterogeneous Sources  

Query Optimizer 

SPARQL Query Q 

Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer: Ontario: Federated Query Processing Against a Semantic Data Lake. 
DEXA (1) 2019 

Source Selection & Query Decomposition 

Query Optimizer 

Execution Strategies   

SPARQL Query Q 
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● Benchmark: 
○ Life Science Linked Open Data (LSLOD) 

○ 10 RDF Data Source 

○ 10 Simple Queries 

■ UNION, OPTIONAL, DISTINCT 

■ 3 - 8 triple patterns 

■ 2 - 4 star-shaped sub-queries 

 
 

Experimental Setup 

#triples #subjects #predicates #objects RDF file size 

96.10 M 8.32 M 742 27.47 M 16.0 GB 

 A. Hasnain, Q. Mehmood, S. Sana e Zainab, M. Saleem, C. Warren, D. Zehra, S. Decker, and D. 
Rebholz-Schuhmann. Biofed: federated query processing over life sciences linked open data. Journal of 
Biomedical Semantics, 8(1):13, Mar 2017.  
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● 23 Docker containers 
○ 10 RDF sources (Virtuoso 6.01.3127) 
○ 10 RDB sources (MySQL 5.7) 
○ Three engines (FedX, MULDER, 

Ontario) 
● Metrics: 

○ Execution time: Time elapsed 
between query submission and 
retrieval of last answer 

 

Experimental Setup 

CI: Star-shaped subqueries with no 
instantiations or filter clauses  
 
CII: Star-shaped subqueries with no 
instantiations or filter clauses, and defined 
over an RDF class implemented by joining 
several relational tables in a data lake  
 
CIII: Star-shaped subqueries with 
instanstiations in object variables 
 
 CIV:  Star-shaped subqueries with 
instantiations or filter clauses, and defined 
over an RDF class implemented by joining 
several relational tables in a data lake  

Experimental Configuration Types of Subqueries 
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Goal: Evaluate the impact of different subqueries--star-shaped groups 
(SSQs)-- on the performance of a query engine. 

Exp I: Impact of Star-shaped Groups  

CI 

CI 
CI 

CI 

CII 
CII 

CIV CIV 

CIII CIV 

CIV 

CIV 

RDB scans a relation or a set of relations, 
while an RDF engine scans over all data. Thus, 
RDB engines outperform RDF engines 
 

RDB only has indexes on primary keys, while 
an RDF engine has indexes over combinations 
of subject, predicate, and object. Thus, RDF 
engines outperform RDB engines 
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Goal: Performance of Ontario engine over RDF data sources and the 
overhead introduced while considering heterogeneity 

 

Exp II: Impact of Considering Heterogeneity 

Ontario pays the price of considering heterogeneous data 
sources. Ontario outperforms both FedX and MULDER by 
generating efficient plans and using optimization rules tailored 
for RDF sources on the rest of the queries 
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Goal: Performance of Ontario over heterogeneous sources, i.e., 
RDF and RDB 

Exp III: Impact of Heterogeneity 

Characteristics of the queries impact on the 
performance of the federated query engine.  Ontario 
is able to identify according to the data source 
implementations which is the most effective plan.  
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Data Evolution…. 

Data 
Entity 
Changes, e.g., 
Completeness 

Schema 
Changes 

Changes in Data 
Source 
Performance 
and Availability  

Data Distribution  
Changes 
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Required Solutions to Support Evolution  

Source Evolution 
 

Selecting the sources 
according to their current 
conditions and availability 

Querying Evolving Data 

Environment 
Evolution 
 

Executing  queries 
according to current 
conditions of the 
environment 

Data Evolution 
Considering the status of the 
data, e.g., completeness, during 
the execution of the query 
 

Knowledge 
Evolution 
Considering the evolution 
of the knowledge during 
the execution of the query 
 

Knowledge 
Incompleteness 
Considering that unknown 
facts may need to be 
predicted during query 
execution 
 

1 

2 

3 

4 

5 
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Impacting Data Complexity Dimensions 
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Ideal Federated Query Engines 

● Systems able to change their behavior by learning behavior of data 
providers. 

● Receive information from the environment. 
● Use up-to-date information to change their behavior. 
● Keep iterating over time to adapt their behavior based on the 

environment conditions. 
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Challenges: Federated Query Processing  
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Adaptive Query Processing 

Optimized-Then-Execute Paradigm Adaptive Query Processing  
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Adaptive SPARQL Query Engines 

Adapt to Source and Environment Evolution: 
▪ Misestimated or missing statistics. 
▪ Unexpected correlations. 
▪ Unpredictable costs. 
▪ Dynamically changing data, workload, and source 

availability. 
▪ Changes at rates at which tuples arrive from sources 

• Initial Delays. 
• Slow Delivery. 
• Bursty Arrivals. 
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Adaptivity in Federated Query Processing 

Adaptive Query Federated Engines are able to: 

● Change their behavior by learning the behavior of data 
providers 

● Receive and exploit information from the environment 
● Use up-to-date information to change their behavior 
● Keep iterating over time to adapt their behavior based on 

the environment conditions 
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Adaptive Federated Query Engines 

Re-optimize the original plan 
on-the-fly according to the 
source conditions 
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Existing Federated SPARQL Query Engines 
Ex

is
tin

g 
Fe

de
ra

te
d 

Q
ue

ry
 E

ng
in

es
 Adaptive Source Selection 

Adaptive Query Processing 

Granularity of the 
Adaptation Adaptation Level 

Fine-grained 

Coarse-grained 

Existing Federated Q
uery Engines 
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Existing Federated SPARQL Query Engines 

Ex
is

tin
g 

Fe
de

ra
te

d 
Q

ue
ry

 E
ng

in
es

 Adaptive Source Selection 

Adaptive Query Processing 

Identification of Relevant 
Sources Based on Current 

Conditions 

Query Decomposition Based on 
Current Conditions  

Adaptive Operators, e.g., 
GJoin[1], SMJoin [13] 

Adaptive Query Engines, e.g., 
Networks of Linked Data 

Eddies[2]  
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Adaptivity at Source Selection Level 

Source Selection: searching strategies to select the sources 
for answering a query according to the real-time source 
conditions: 

● Schema changes 
● Source availability  
● Data distribution changes 
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Adaptivity During Source Selection 

64 

Fine-Grained 
Adaptivity 

ANAPSID SPLENDID 

Coarse-Grained 
Adaptivity No Adaptivity 

Fed-DESATUR 

MULDER DAW 
HIBISCUS 

LILAC FEDRA 

Source Selection techniques that allow for identifying the sources that can be 
used to answer a query based on the current conditions of the sources 
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Query Planning Over Heterogeneous Data Sources 

Source Selection 
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Existing Federated SPARQL Query Engines 

Ex
is

tin
g 

Fe
de

ra
te

d 
Q

ue
ry

 E
ng

in
es

 Adaptive Source Selection 

Adaptive Query Processing 

Identification of Relevant 
Sources Based on Current 

Conditions 

Query Decomposition Based on 
Current Conditions  

Intra-Operator 

Inter-Operator 

Only adaptivity to changes in the 
environment is addressed!! 
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Adaptivity During Query Execution 

67 

Fine-Grained 
Adaptivity 

ANAPSID SPLENDID 

No Adaptivity 

Fed-DESATUR 

MULDER 

DAW HIBISCUS 

LILAC FEDRA 

Implement physical operators and query processing techniques to adjust 
query schedulers to the conditions of the sources and the network 

Network of 
Linked Data 
Eddies  (nLDE) 
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Adaptive Query Engine  

Intra-Operator 

● Donec risus dolor porta venenatis  

Operators able to detect when 
sources become blocked or 
data traffic is bursty  

● Opportunistically produce 
results as quickly as data 
arrives from the sources  

● Results are produced 
incrementally 
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Adaptive Query Engine  

Intra-Operator 

● Donec risus dolor porta venenatis  

Operators able to detect when 
sources become blocked or 
data traffic is bursty  

● Opportunistically produce 
results as quickly as data 
arrives from the sources  

● Results are produced 
incrementally 

M. Acosta, M.E. Vidal, T. Lampo, J. Castillo, E. Ruckhaus: ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints. ISWC, 2011. 
 

GJoin [Acosta 
and Vidal et al. 
2011] 

 
 



Page 70 

Intra-Operator 

ANAPSID intra-operator strategies are able to produce all the results 
faster than state-of-the-art join operators in presence of delays 
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Adaptive Query Engine  

Intra-Operator 

● Donec risus dolor porta venenatis  

Operators able to detect when 
sources become blocked or 
data traffic is bursty  

● Opportunistically produce 
results as quickly as data 
arrives from the sources  

● Results are produced 
incrementally  

SMJoin [Galkin et al. 2017] 
 

M. Galkin, K. M. Endris, M. Acosta, D. Collarana, M.-E.r Vidal, S. Auer: SMJoin: A Multi-way Join Operator for SPARQL Queries. SEMANTICS 2017: 
 
. 
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Adaptive Query Engine  

Intra-Operator 

● Donec risus dolor porta venenatis  

Operators able to detect when 
sources become blocked or 
data traffic is bursty  

● Opportunistically produce 
results as quickly as data 
arrives from the sources  

● Results are produced 
incrementally  

SMJoin [Galkin et al. 2017] 
 

M. Galkin, K. M. Endris, M. Acosta, D. Collarana, M.-E.r Vidal, S. Auer: SMJoin: A Multi-way Join Operator for SPARQL Queries. SEMANTICS 2017: 
 
. 
 

SMJOIN SMJOIN 
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Adaptive Query Engine  

Intra-Operator 

● Donec risus dolor porta venenatis  

● Produce an answer as soon as 
it is computed 

● Can keep producing 
intermediate results even 
when data a source becomes 
blocked 
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Adaptive Query Engine  

Intra-Operator 

● Donec risus dolor porta venenatis  

● Produce an answer as soon as 
it is computed 

● Can keep producing 
intermediate results even 
when data a source becomes 
blocked 

M. Acosta, M.E. Vidal: Networks of Linked Data Eddies: An Adaptive Web 
Query Processing Engine for RDF Data. ISWC 2015 
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Existing Federated SPARQL Query Engines 

Ex
is

tin
g 

Fe
de

ra
te

d 
Q

ue
ry

 E
ng

in
es

 Adaptive Source Selection 

Adaptive Query Processing 

Identification of Relevant 
Sources Based on Current 

Conditions 

Query Decomposition Based on 
Current Conditions  

Adaptive Operators, e.g., 
GJoin[1], SMJoin [13] 

Adaptive Query Engines, e.g., 
Networks of Linked Data 

Eddies[2]  

Only adaptivity to changes in the 
environment is addressed!! 
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Evaluation 

Dataset: DBpedia 2015 (HDT on top of TPF server), 837M triples 

Benchmark 1: 14 high-selective queries (<1000 int. res.) 

Benchmark 2:  Four low-selective queries (>1000 int. res.) 

Metrics: 
•  Execution Time, ms 
•  Completeness over time, % 
Compared tools: 
● TPF: triple pattern fragment client [7] 
● nLDE: network of Linked Data Eddies [2] 
● SMJoin: multi-way join operator for SPARQL [13] 
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Benchmark 1: High Selective Queries 

An adaptive approach like SMJoin outperforms other approaches in high-
selective queries that produce small number of intermediate results 
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Benchmark 2: Low Selective Queries 

•SMJoin yields the first answer at about the same time as nLDE 
•SMJoin has to process more intermediate results 
•Q2: results are yielded but all intermediate tuples have to be processed 
 

Q1  Q2  
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Benchmark 2: Low Selective Queries 

•SMJoin yields the first answer at about the same time as nLDE 
•SMJoin has to process more intermediate results 
 
 

Q3  Q4  
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Benchmark 2: Low Selective Queries 

•SMJoin yields the first answer at about the same time as nLDE 
•SMJoin has to process more intermediate results 
 
 

Q3  Q4  
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Evaluation 

Dataset: DBpedia 2015 (HDT on top of TPF server), 837M triples 

Benchmark 3: 25 queries against DBpedia; basic graph patterns with up to 15 
triple patterns.  

Metrics: 
•  Execution Time, ms 
 
Compared tools: 
● nLDE: network of Linked Data Eddies  
● No Inter-Operator Strategy  
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Evaluation 

No Inter-Operator Strategy 

Inter-Operator Strategy 

Delays simulated with a Gamma distribution (𝛂𝛂=1, 𝛃𝛃=0.3) 

Adaptive query processing strategies are able to speed up 
query execution in presence of delays 
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Required Solutions to Support Evolution  

Source Evolution 
 

Selecting the sources 
according to their current 
conditions and availability 

Querying Evolving Data 

Environment 
Evolution 
 

Executing  queries 
according to current 
conditions of the 
environment 

Data Evolution 
Considering the status of the 
data, e.g., completeness, during 
the execution of the query 
 

Knowledge 
Evolution 
Considering the evolution 
of the knowledge during 
the execution of the query 
 

Knowledge 
Incompleteness 
Considering that unknown 
facts may need to be 
predicted during query 
execution 
 

1 

2 

3 

4 

5 
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Impacting Data Complexity Dimensions 
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Data Changes…. 

PREFIX iasis:<http://iasis/vocab/> 
SELECT ?id  ?stage ?limit  
 WHERE { 
  ?bm  a  iasis:LungCancerBiomarker . 
  ?id iasis:associated ?bm . 
  ?bm iasis:associated ?obs . 
  ?bm iasis:limit ?limit . 
  ?bm iasis:stage ?stage 
     } 

Lung Cancer Biomarkers? 

iasis:CYFRA-21-1 iasis:50 

iasis:NSE iasis:70 

iasis:CYFRA-21-1 iasis:70 

iasis:II 

iasis:III 

iasis:III 

http://iasis/vocab/
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Data Changes…. 

PREFIX iasis:<http://iasis/vocab/> 
SELECT ?id  ?stage ?limit  
 WHERE { 
  ?bm  a  iasis:LungCancerBiomarker . 
  ?id iasis:associated ?bm . 
  ?bm iasis:associated ?obs . 
  ?bm iasis:limit ?limit . 
  ?bm iasis:stage ?stage 
     } 

Lung Cancer Biomarkers? 

iasis:CYFRA-21-1 iasis:50 

iasis:NSE iasis:70 

iasis:CYFRA-21-1 iasis:70 

iasis:II 

iasis:III 

iasis:III 

http://iasis/vocab/
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Hybrid Federated Query Engines 

Source Selection & Query Decomposition 

Hybrid Execution  Strategies  
 Crowd Microtask Manager  

Query Optimizer 

SPARQL Query Q 

M. Acosta, E. Simperl, F. Flöck, M.-E. Vidal: HARE: A Hybrid SPARQL Enhancing answer completeness of SPARQL queries via 
crowdsourcing. J. Web Sem. 45: 41-62 (2017) 

Crowd 

Source Selection & Query Decomposition 

Query Optimizer 

Execution Strategies   

SPARQL Query Q 
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Hybrid Query Processing 

PREFIX iasis:<http://iasis/vocab/> 
SELECT ?id  
 WHERE { 
 ?bm  a  iasis:LungCancerBiomarker . 
  ?bm iasis:associated ?obs .  
  ?id iasis:associated ?bm . 
    ?bm iasis:stage ?stage 
} 

Crowd 

PREFIX iasis:<http://iasis/vocab/> 
SELECT ?limit  
 WHERE { 
?bm iasis:limit ?limit . 
  ?bm iasis:stage ?stage 
  ?id iasis:associated ?bm . 
 

PREFIX iasis:<http://iasis/vocab/> 
SELECT ?id  ?stage ?limit  
 WHERE { 
  ?bm  a  iasis:LungCancerBiomarker . 
  ?id iasis:associated ?bm . 
  ?bm iasis:associated ?obs . 
  ?bm iasis:limit ?limit . 
  ?bm iasis:stage ?stage 
  
   } 

Lung Cancer Biomarkers? 

http://iasis/vocab/
http://iasis/vocab/
http://iasis/vocab/
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HARE: A Hybrid Query Engine 

Crowd 

● Completeness model to estimate dataset 
completeness 

● Crowd knowledge bases to capture crowd 
answers about missing data  

● Query engine that combines knowledge in 
knowledge bases and estimates from the 
completeness model to decompose and 
plan sub-query execution 

● Microtask manager that exploits metadata 
to crowdsource subqueries as microtasks 
and update the knowledge bases 
according to the crowd answers 

M. Acosta, E. Simperl, F. Flöck, M.-E. Vidal: HARE: A Hybrid SPARQL Enhancing answer completeness of SPARQL queries via 
crowdsourcing. J. Web Sem. 45: 41-62 (2017) 

Source Selection & Query Decomposition 

Hybrid Execution  Strategies  
 Crowd Microtask Manager  

Query Optimizer 

SPARQL Query Q 
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HARE Microtasks 

Metadata is utilized by the 
microtask manager to 
automatically generate well-
described crowd tasks  
Microtasks are submitted to  
crowdsourcing platforms, 
e.g., CrowdFlower or 
Mechanical Turk 
Answers collected from the 
crowd are represented as 
structured data 
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Experimental Study - Set Up 

• Benchmark: 50 queries against DBpedia (v. 2014). 
- Ten queries in five different knowledge domains: 

  History, Life Sciences, Movies, Music, and Sports. 

• Implementation details: 
- HARE is implemented in Python 2.7.6, 
- The crowd is reached via CrowdFlower. 

• Crowdsourcing configuration: 
- Four different RDF triples per task, 0.07 US$ per task. 
- At least three judgments were collected per task. 

• Total RDF triple patterns crowdsourced: 502 
• Total answers collected from the crowd: 1,609 
 



Page 92 

Experimental Evaluation 
Sports Music Life Sciences 

Movies History 
Crowdsourced answers and 
answers collected from DBpedia 
 
HARE identifies subqueries with 
incomplete answers 
 
Hybrid query processing enhances 
query answer completeness 
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Experimental Evaluation 

HARE is able to produce more than 
75% of the answers at the 12th minute  

Movies History 

Sports Music Life Sciences 
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Experimental Evaluation 

Precision Recall 

The crowd exhibits heterogeneous performance within domains. 
This supports the importance of HARE triple-based approach.  
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Lessons Learned 

● Hybrid data integration systems 
allow for the adaptation of the 
system  to the conditions of the data 
sources  

● Hybrid data integration systems 
enable the integration of 
heterogeneous data sources 

● Wisdom of the crowd can 
contribute the evolution of the 
knowledge 

 
 

Data Integration 
System 

Wrapper Wrapper Wrapper 
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Required Solutions to Support Evolution  

Source Evolution 
 

Selecting the sources 
according to their current 
conditions and availability 

Querying Evolving Data 

Environment 
Evolution 
 

Executing  queries 
according to current 
conditions of the 
environment 

Data Evolution 
Considering the status of the 
data, e.g., completeness, during 
the execution of the query 
 

Knowledge 
Evolution 
Considering the evolution 
of the knowledge during 
the execution of the query 
 

Knowledge 
Incompleteness 
Considering that unknown 
facts may need to be 
predicted during query 
execution 
 

1 

2 

3 

4 

5 
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according to their current 
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Executing  queries 
according to current 
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environment 

Data Evolution 
Considering the status of the 
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the execution of the query 
 

Knowledge 
Evolution 
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of the knowledge during 
the execution of the query 
 

Knowledge 
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predicted during query 
execution 
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Future Hybrid Federated Query Engines 

Source Selection & Query Decomposition 

Hybrid Execution  Strategies  
  Microtask Manager for Experts 

Query Optimizer 

SPARQL Query Q 

Experts 

Source Selection & Query Decomposition 

Hybrid Execution  Strategies  
 Crowd Microtask Manager  

Query Optimizer 

SPARQL Query Q 

Crowd 
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Future Hybrid Federated Engines 

Source Selection & Query Decomposition 

Hybrid Execution  Strategies  
  Microtask Manager for Experts 

Query Optimizer 

SPARQL Query Q 

Experts 

Source Selection & Query Decomposition 

Hybrid Execution  Strategies  
 Crowd Microtask Manager  and 

Knowledge Discovery 

Query Optimizer 

SPARQL Query Q 

Crowd 
& Experts 
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Data Integration Systems 

Data Integration 
System 

Centralized Distributed 

Homogeneous 

Heterogeneous 

Data Integration 
System 

Data Integration 
System 

Wrapper Wrapper Wrapper 

Data Integration 
System 

Existing Approaches have focused on adaptive techniques to 
support SPARQL Query Processing over RDF Data Sources 
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Data Integration Systems 

Data Integration 
System 

Centralized Distributed 

Homogeneous 

Heterogeneous 

Data Integration 
System 

Data Integration 
System 

Wrapper Wrapper Wrapper 

Data Integration 
System 

Future Approaches require  to  be  focused  on techniques to 
support data and knowledge evolution of RDF Data Sources 
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Future Hybrid Query Engines 

Data Curation 
 
Crowd based techniques able 
to exploit “public domain” 
knowledge to complete RDF data 
sources. 
 

3 
 

RDF Data Sources 
 

Adaptive query processing 
techniques able to adjust query 
execution schedulers to current 
conditions of the data sources. 

 

4 

Knowledge Prediction 
 
Knowledge discovery 
techniques able to  “predict 
unknown  facts” to complete 
RDF data sources.. 

1 
Knowledge Curation 

 
Crowd based techniques able 
to exploit “specialized  
knowledge” to complete RDF 
data sources. 

2 
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