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Abstract—With the aim of improving ecological interest, the 

share of renewable energy sources (RES) in the energy 

production is to be increased. Nonetheless, that growth 

adversely influences the grid’s instability, as a result of the 

dependency between the RES production and weather 

conditions. Therefore, with the aim of providing a stable 

energy system, it is necessary to plan the consumption in 

advance with respect to the availability of RES production. 

This paper is focused on comparing current SoA approaches 

for two different renewable energy sources, photovoltaic 

panels and solar thermal collector, using real world data 

from Denmark and Spain.  

I. INTRODUCTION 

In the 20th century, electrical energy was produced 
mainly from fossil fuels. However, this created concerns 
about ecological environment – primary about greenhouse 
gas emissions, global warming and climate change. 
Therefore, in recent times, renewable energy sources, such 
as photo-voltaic (PV) panels, solar thermal collector (STC) 
and wind turbines (WT), were incorporated in the energy 
production as well, so as to decrease the use of fossil fuels. 
Nonetheless, as for the fact that their production highly 
depends on the weather conditions, this modification 
destabilizes the grid system. However, when a production 
forecaster for these sources is available, it is possible to plan 
and arrange the consumption with the goals of decreasing 
spending and environment pollution as well as improving 
other factors also. Consequently, in order to minimize the 
negative effects of the introduction of intermittent sources 
in the energy source portfolio, energy production 
forecasters became a key field of interest among 
researchers in this domain and are analyzed in this paper. 

II. BRIEF STATE OF THE ART ANALYSIS 

Numerous renewable energy sources are available these 
days, but within this paper PVs and STCs will be covered. 
Additionally, methodologies differ based on the forecasting 
horizon. As this paper will focus on one day-ahead forecast, 
methodologies present in the field of interest will be briefly 
reviewed. 

Different approaches in production forecasting can be 
found in relevant literature. Chronologically, physical 
models were first presented. They are defined using 
physical characteristics and mathematical equations. For 
STCs, they are mostly the only one currently present [1], 
[2]. On the other hand, regarding PV production 
forecasting, physical models are as a rule based on the 

electrical circuit models, as reviewed in [3]. However, these 
models require various physical parameters such as panel’s 
surface area, position and angle of the panels, relevant 
voltages, currents, temperatures from data sheets etc. which 
often happen to be inaccessible. Therefore, with years, 
physical approaches were substituted with the statistical 
ones. Statistical models describe the system using variety 
of statistical characteristics and accessible data such as 
Autoregressive moving average methods (such as AR, MA, 
ARMA, ARIMA) explored in [4] and [5]. Finally, the most 
precise, especially in cases when huge amounts of data 
regarding energy production is available, are data driven 
models, which is why they are currently the most frequently 
analyzed in the literature. Various approaches can be found 
such as Neural Networks, supervised learning (linear 
regression, support vector machines, etc.), clustering and 
numerous hybrid ones as reviewed in [6]. 

Taking all of previous into consideration, the main focus 
of this paper will be developing and comparing different 
machine learning (ML) approaches for PV and STC 
production forecasting. The main contribution of this paper 
is analyzing the same models applied for estimating 
production of different renewable sources, as in literature 
comparisons are always given between the estimation 
performances for the same source. Additionally, for the 
following simulations, real world data from Denmark and 
Spain was used. 

III. METHODOLOGY 

To determine the best prediction model, different 
techniques were employed with each one of them being 
individually assessed by fine-tuning its respective 
parameters specific to its implementation. Starting with the 
optimal linear regression, its model is determined by testing 
different model orders and regression strength. The support 
vector regression (SVR) is optimized through the variation 
of the regularization parameter, the kernel coefficient and 
its independent term. As for neural networks, the structure 
of the network is varied through testing different layouts 
determined by the numbers of hidden layers, their 
arrangement and different numbers of neurons within them. 
The optimal random forest regressor is determined by 
testing different hyper parameters defining the maximum 
depth of the branching process, polynomial degree of input 
features and number of estimators. All of these parameters 
were examined using grid search with the goal of obtaining 
results which are not on the edge of the considered domain, 



in order to be as sure as possible that the chosen parameters 
and architectures are optimal. 

The performance of each of the models is evaluated 
using two standard metrics: the mean absolute error (MAE) 
and the mean squared error (MSE) between the values that 
are supposed to be estimated and the ones that are outputs 
of the model. The results table that will be presented later 
in the text only depicts models with the best performance 
for each of the techniques with their corresponding MAE 
and MSE values. 

IV. RESULTS  

A. Weather data 

After the models that were to be used have been chosen, 
in the first part of this section, selected input features will 
be discussed. Having in mind the nature of the considered 
renewable sources, it is undoubtable that weather 
conditions are highly correlated with the production that is 
to be estimated, which is why they are inevitable when 
picking the inputs. Expectedly, solar irradiation is by far the 
most correlated weather parameter with the desired output, 
which is why it was decided to include it as an input 
predictor. Consequently, the list of acceptable forecast 
weather services was limited, as this decision required 
providing 24-hour ahead irradiation forecast with hourly 
resolution. As an appropriate one, Weatherbit [7] online 
weather forecasting service has been chosen. Additionally, 
as the inputs apart from the aforementioned irradiation, 
information about humidity are considered, wind speed and 
direction, UV, outdoor temperature, cloud coverage and 
pressure were chosen and are also reported by Weatherbit. 
Finally, for STC, previous production has also been used. 

B. Production data 

Apart from the weather data obtained using the 
Weatherbit service, historical production data has is also 
required for models training purposes. As part of H2020 
RESPOND project, this data was collected. Namely, hourly 
historical production data from the Danish pilot has been 
collected through the Evishine platform [8] which contains 
production data for different buildings from a couple of 
previous years. This data is scaled down to represent the 
amount of energy produced for users who are taking part in 
the project and an example of the one-day production 
measurements data. On the other hand, STC production 
data has been obtained directly from the RESPOND 
platform. Namely, as a part of the RESPOND project, STC 
production measurements are being collected through the 
sensor which sends a pulse after each kilowatt-hour of 
energy is produced, representing the amount of produced 
energy through the frequency of pulses, as shown in Figure 
1.Error! Reference source not found. Unlike with the PV 
panels, whose production is influenced just by weather 

parameters and panel’s physical characteristic, STC 
production could also vary depending on the user demand. 
In the simple case where the collector is directly connected 
or closely coupled with the user loop, the user’s demand 
habits influence the production data. In other words for 
direct connections specifically, when the users require high 
volumes of thermal energy, the temperature of the return 
circuit to the collector is significantly lower that what is the 
case when little to no energy is required. This, in turn, 
influences the total energy leaving the collector through the 
direct circuit. On the other hand, if the collector is not 
directly connected with the user and there are one or more 
how water tanks for heat storage, demand is much less 
influential on the production since the tanks act as filters. 
Therefore, STC production data can vary drastically 
depending on the data source with topology playing a key 
role. In this paper, influence of the demand is negligible and 
the influence irradiation is significant, allowing for a 
precise estimator to be implemented. 

C. Hyperparameter selection 

After collecting the historical data for both weather and 
production outputs, the training process has been carried 
out in Python. All the data has been separated into three 
groups – training, validation and testing sets. Moreover, it 
was normalized by the standard deviation and centered 
using mean value of training data. Thereafter, as it has 
already been mentioned, the training process has been 
performed on various combination of model hyper 
parameters which are shown in Table I and Table II. For 
support vector machine models, three different kernel 
functions have been used – radial basis function (RBF), 
linear and sigmoid. For each of them, the regularization 
parameter has been varied in the interval from 1e-6 to 1 
following a logarithmic law. Additionally, for RBF and the 
sigmoid one, kernel coefficients were taken from the 
interval between 1e-3 and 1e3, again following a 
logarithmic law, whilst the independent term for sigmoid 
kernel took values from the {0, 1, 10, 100} set. For linear 
regression, two hyper parameters were optimized – the 
regularization parameter (with values from 1e-4 to 1e3 
following a logarithmic law) and the polynomial degree of 
input values taking integer values from 1 to 10. Following 
that, neural network models have been tested with 4 groups 
of hyper parameter being optimized – the regularization 
parameter, taking values from the {0, 1e-4, 1e-3, 1e-2, 1e-
1} set, the polynomial degree of input being one, two or 
three, the number of hidden layers and number of neuron in 
each hidden layer. Architectures of hidden layers that have 
been tested were {30}, {40}, {40, 5}, {40, 10}, {40, 20}, 
{40, 40}, {50}. For KNN and KNN weighted models, the 
number of estimators was optimized taking integer values 
from the interval from 3 to 50. Finally, for the random 
forest model, the following parameters were tuned - 

Figure 1. Example of STC production data representation 



polynomial degree (integers between 1 and 9), number of 
estimators (values from {5, 10, 20, 50, 100, 200, 300, 500, 
1000} set and maximum depth of each estimator (values 
from set {None, 5, 10, 20, 100}). 

D. Model selection 

Finally, for each methodology and source, the smallest 
MSE in percent, i.e. the performance of the model with the 
optimal hyperparameters is shown in Table I. It can be 

noticed that optimal methodology differs between the 
sources – for PV production forecasting NNs are found to 
be optimal, whilst for STC the RF model is the most 
suitable. Neural network that performed the best for PV 
production forecaster had 2 hidden layers with 40 and 5 
neurons in each of them, respectively. It was trained using 
regularization factor 0.001 and polynomial degree 2. On 
the other hand, optimal STC production forecaster had 50 
estimators, with linear inputs and no max depth. 

 

TABLE II.  
 NUMBER OF DIFFERENT HYPER PARAMETERS AND MODELS THAT HAVE BEEN TESTED 
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SVR - RBF 7 7       49 

SVR - linear 7        7 

SVR - sigmoid 7 7 4      196 

Linear regression 8   10     80 

Neural network 5   3 7   105 

KNN (weighted)       48  48 

Random forest    9   10 5 450 

          935 

 

TABLE I.  
 VALUES OF CONSIDERED HYPER PARAMETERS FOR EACH APPROACH 

  Parameters 
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SVR - RBF 1e-6 - 1 1e-3 – 1e3       

SVR - linear 1e-6 - 1        

SVR - sigmoid 1e-6 - 1 1e-3 – 1e3 {0,1,10, 100}      

Linear regression 1e-4 – 1e3   1 - 10     

Neural network 0 – 0.1   1 - 3 
{30, 40, 

50} 
{5, 10, 
20, 40} 

  

KNN (weighted)       3 - 50  

Random forest    1 - 9   5 – 1e3 
{None, 5, 10, 

20, 100} 

 



Suitability of the chosen models for RES production 
forecasters is additionally illustrated by the fact that the 
second best performing model for PV is the RF whilst for 
STC it is the RF, distinguishing them as the most 
appropriate in context of day-ahead renewable energy 
production forecasting. Additionally, to further illustrate 
the obtained results, estimations for one day outputs for 
each resources are given in Figure 2, from where it can be 
confirmed that model estimations indeed follow the real 
production, and so, that the presented methodology can be 
exploited in real world practice. It can be noticed that in 
times in which there is no irradiation, the production is zero, 
which is the heuristic used to improve the performance of 
all the models. In other words, in the periods of the day 
when the global horizontal irradiation, obtained from 
Weatherbit, service is zero, the output of the estimator is set 
to be zero. 

Finally, these models have been deployed and integrated 
as a part of a cloud platform which is intended to influence 

the users to increase energy savings and improve grid 
stability by responding to the demand response events. 
Therefore, its primary role was to provide necessary input 
for an energy dispatch optimization service which is 
supposed to provide an optimal curve, thus giving users 
guidance towards best possible behavior depending on the 
load curve, future RES production and pricing tariffs. 
Nonetheless, it turned out that end users are interested in 
more than the optimal load curve but the production 
forecast values themselves since these values are 
essentially giving useful feedback for them in order to adapt 
their habits and demand depending on the availability of 
renewable production. 

Taking all of previous into consideration, it can be 
concluded that with machine learning algorithms, 
especially random forest and neural network models, high 
performances could be achieved for day-ahead RES 
production forecasting, in turn providing the end user with 
valuable information in order to motivate them to adapt the 
consumption and decrease the necessity of burning fossil 
through optimal utilization of renewable sources.  
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