
Chapter 8
Context-Based Entity Matching for Big Data

Mayesha Tasnim1, Diego Collarana1, Damien Graux2, and Maria-Esther Vidal3

1 Fraunhofer IAIS, Germany
2 ADAPT SFI Research Centre, Trinity College Dublin, Ireland

3 TIB Leibniz Information Centre For Science and Technology, Hannover, Germany

Abstract. In the Big Data era, where variety is the most dominant
dimension, the RDF data model enables the creation and integration
of actionable knowledge from heterogeneous data sources. However, the
RDF data model allows for describing entities under various contexts,
e.g., people can be described from its demographic context, but as well
from their professional contexts. Context-aware description poses chal-
lenges during entity matching of RDF datasets—the match might not be
valid in every context. To perform a contextually relevant entity match-
ing, the specific context under which a data-driven task, e.g., data in-
tegration is performed, must be taken into account. However, existing
approaches only consider inter-schema and properties mapping of differ-
ent data sources and prevent users from selecting contexts and condi-
tions during a data integration process. We devise COMET, an entity
matching technique that relies on both the knowledge stated in RDF
vocabularies and a context-based similarity metric to map contextually
equivalent RDF graphs. COMET follows a two-fold approach to solve the
problem of entity matching in RDF graphs in a context-aware manner.
In the first step, COMET computes the similarity measures across RDF
entities and resorts to the Formal Concept Analysis algorithm to map
contextually equivalent RDF entities. Finally, COMET combines the re-
sults of the first step and executes a 1-1 perfect matching algorithm for
matching RDF entities based on the combined scores. We empirically
evaluate the performance of COMET on testbed from DBpedia. The ex-
perimental results suggest that COMET accurately matches equivalent
RDF graphs in a context-dependent manner.

1 Introduction

In the Big Data era, variety is one of the most dominant dimensions bringing
new challenges for data-driven tasks. Variety alludes to the types and sources
of data that are becoming increasingly heterogeneous with new forms of data
collection being introduced with time. At one point in time, the only source
of digital data was spreadsheets and databases. Today data is collected from
emails, photographs, digital documents, or audio. The variety of unstructured
and semi-structured data creates issues during data analysis. Therefore, these
varying forms of data must be integrated for consistency in storage, mining,

Chapter 8 Context-Based Entity Matching for Big Data 115

and analysis. The process of integrating these complex and semi-structured data
poses its own set of challenges. For example, the same real-world object may be
represented in different data sources as different entities; it therefore challenging
to identify entities that refer to the same real-world object.

The Resource Description Framework (RDF) data model enables the de-
scription of data integrated from heterogeneous data sources. RDF is designed
to have a simple data model with formal semantics to provide inference capabil-
ities. The syntax of RDF describes a simple graph-based data model, along with
formal semantics, which allows for well-defined entailment regimes that provide
the basis for logical deductions. RDF has the following principal use cases as
a method for describing web metadata: (i) to allow applications to use an in-
formation model which is open rather than constrained; (ii) to allow web data
to be machine-processable; and (iii) to combine and integrate data from several
sources incrementally. RDF is designed to represent information in a minimally
constraining and flexible way; it can be used in isolated applications, where indi-
vidually designed formats might be easily understood, and the RDF generality
offers higher value from sharing. Thus, the value of RDF data increases as it
becomes accessible to more applications across the entire internet.

RDF is a semi-structured data model that allows for the encoding of multiple
contexts of an entity within the same graph. A context describes a situation that
limits the validity of particular information. The so-called ”Context as a Box”
approach [62] considers context as the conditions and constraints which define
whether or not a piece of information is accurate. Contextual information (or
meta information) represents the conditions and constraints which describe the
situation of a context. For example, the fact ”Donald Trump is the President of
the United States of America” is valid only in the context of ”the presidential
period between the years 2017 and 2021”. The RDF data model allows for rep-
resenting entities of the same type with different properties. This in turn allows
for the encoding of multiple contexts of an entity within the same graph. For
example, the entity Donald Trump in an RDF graph can have properties relating
to the context of his career as a politician, and also the ones that describe his
role as a reality TV celebrity. This feature of RDF is useful for addressing the
data complexity challenge of variety– a dominant dimension of data in the Big
Data era [217]. Nevertheless, enabling diverse representations of the same entity
poses new challenges during the analysis of RDF graphs. This is particularly
prevalent in cases where specific contexts need to be considered for the effective
identification of similar entities [34]. Two entities may be similar in one context
but dissimilar in another. In this chapter4, we present a novel approach to tackle
the problem of entity matching considering context as a new dimension of the
matching algorithm.

4 This chapter is based on the master thesis of Mayesha Tasnim

116 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

(a) Arnold S.’s entity in D1 (b) Arnold S.’s entity in D2 (c) Donald T.’s entity in D2

(d) Entity matching using similarity (e) Entity matching using similarity and
context

Fig. 1: Motivation Example. The top row shows three entities across two
datasets. The bottom row shows two matching scenarios, the left one not con-
sidering context during entity matching, and the right one taking context into
consideration.

1.1 Motivating Example

Following the principle of the web of linked data, RDF allows for the represen-
tation of different contexts of an entity within the same graph. This means that
applications attempting to match entities from different graphs have to deal with
entities that are valid in different contexts. In order to match entities in such a
way that they comply with the context specified by the user of the application,
the system context must be taken into account. A system’s context represents
any kind of information that describes the system and its requirements. If this
system context is not considered, the entity matching operation will match en-
tities that are not relevant or valid under the definition of system context.

This can be demonstrated using the example of a context-based entity match-
ing scenario using RDF entities representing persons. Arnold Schwarzenegger is
a person with an extensive career in both politics and acting. Consequently, there
is data available regarding both his career in politics and his achievements in
the movie industry. Consider a system that contains data about American politi-
cians and is searching other data sources to match relevant data. The system’s
dataset D1 contains information about Arnold Schwarzenegger and his politi-

Chapter 8 Context-Based Entity Matching for Big Data 117

cal career. In another dataset D2 available on the web there exists information
about Arnold’s acting career, e.g. the movies he has acted in and the roles he has
played. The same dataset D2 also contains information about other celebrities,
like Donald Trump, President of the United States. These entities are presented
in Figure 1a, 1b and 1c, respectively.

In a typical entity matching scenario where context is not considered, en-
tities are matched to the ones that are most similar to them. In such a case,
Arnold Schwarzenegger’s entity from D1 will be matched with the entity in D2

containing information about his acting career, as shown in Figure 1d. However,
in the context of politics, Arnold’s political career is more similar to Donald
Trump’s than his own career in acting. They are politicians of almost the same
age who both support the Republican party. In a political context, their careers
are far more similar than when Arnold’s post as the Governor of California is
compared with his portrayal of the Terminator in Terminator 2. Therefore, when
the context of American politics is considered, the entity of Arnold S. from D1

should be matched with the Donald T. entity from D2. This is an example of
context-aware entity matching.

1.2 Challenges and Problems

To match entities from heterogeneous sources in a unified way, Bellazi et al. [36]
explain the importance of analyzing all data sources to identify interoperability
conflicts. Vidal et al. [445] characterize the interoperability conflicts into six cat-
egories. We summarizes the main characteristics of each interoperability conflict.

1. Structuredness (C1): data sources may be described at different levels of
structuredness, i.e. structured, semi-structured, and unstructured. The en-
tities in a structured data source are described in terms of fixed schema
and attributes, e.g. the entity-relationship model. In semi-structured data
sources, a fixed schema is not required, and entities can be represented using
different attributes and properties. Examples of semi-structured data models
are the Resource Description Framework (RDF) or XML. Lastly, in unstruc-
tured data sources, the no data model is used, so the data does not follow
any structured. Typically unstructured data formats are: textual, numerical,
images, or videos.

2. Schematic (C2): the following conflicts arise when data sources are mod-
eled with different schema. i) the same entity is represented by different
attributes; ii) different structures model the same entity, e.g., classes versus
properties; iii) the same property is represented with different data types,
e.g., string versus integer; iv) different levels of specialization/generalization
describe the same entity; v) the same entity is named differently; and vi)
different ontologies are used, e.g., to describe a gene function the following
ontologies may be used UMLS, SNOMED-CT, NCIT, or GO.

3. Domain (C3): various interpretations of the same domain exist on different
data sources. These interpretations include: homonyms, synonyms, acronyms,
and semantic constraints—different integrity constraints are used to model
a concept.

118 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

4. Representation (C4): different representations are used to model the same en-
tity. These representation conflicts include: different scales and units, values
of precision, incorrect spellings, different identifiers, and various encodings.

5. Language (C5): the data and schema may be specified using different lan-
guages, e.g. English and Spanish.

6. Granularity (C6): the data may be collected under different levels of gran-
ularity, e.g. samples of the same measurement observed at different time-
frequency, various criteria of aggregation, and data model at different levels
of detail.

2 Applications of Entity Matching

Entity Matching (EM) is an important operation in the field of data science
and data management, and as such there are many practical applications where
entity matching is necessary. In this section, we explore two applications of entity
matching, namely Data Integration and Knowledge Summarization.

2.1 Semantic Data Integration

Semantic data integration is a research field that deals with integrating and rec-
onciling semantic heterogeneity in different data sources. Towards this goal, the
inclusion of semantics as a tool to aid data integration makes the entire process
more powerful [100]. Using semantics in data integration means building data
integration systems where the semantics of data are explicitly defined, and these
semantics are used in turn during all the phases of data integration. It is unreal-
istic to entertain the idea that various data sources across the web will publish
data using the same set of rules and conventions. Indeed, in reality data avail-
able across the World Wide Web have very different representations of the same
information and concepts (entities). The stack of semantic technologies allows
the opportunity for describing data semantically, and for interlinking disparate
data sources. Thus, semantic integration is a useful approach for integrating se-
mantically heterogeneous data. The bulk of the work done surrounding semantic
data integration revolves around three aspects [330]. The first aspect is mapping
discovery, or the process of automatically finding similarities between two on-
tologies and mapping properties that present the same real-world concept. The
second is mapping representation, which is concerned with the specific method of
representing mappings between two ontologies. The third and final aspect is en-
abling reasoning, which concerns itself with the process of performing reasoning
over ontologies once the mapping has been established.

An example of an approach to achieve semantic data integration is the
MINTE framework proposed by Collarana et al. [83]. MINTE is a semantic
integration technique that is able to match and merge semantically equivalent
RDF entities in a single step through the utilization of semantics present in the
vocabularies. MINTE uses both semantic similarity measures and the implicit
knowledge present in the RDF vocabularies in order to match and merge RDF

Chapter 8 Context-Based Entity Matching for Big Data 119

graphs that refer to the same real-world entity. MINTE’s performance is powered
by semantic similarity measures, ontologies, and fusion policies that consider not
only textual data content but also logical axioms encoded into the graphs.

MINTE implements a two-step approach for determining the similarity be-
tween two RDF entities and then merging them. In the first step, MINTE imple-
ments a 1-1 weighted perfect matching algorithm to identify semantically equiv-
alent RDF entities in input data sources. Then MINTE relies on fusion policies
to merge triples from these semantically equivalent RDF entities. Fusion policies
are rules operating on RDF triples, which are triggered by certain configurations
of predicates and objects. Fusion policies can also resort to an ontology O to re-
solve possible conflicts. Collarana et al. define multiple fusion policies, e.g. union
policy, subproperty policy and authoritative graph policy, which are each designed
for flexible management and targeted control of an integrated knowledge graph.
Figure MINTE architecture depicts the main components of the MINTE archi-
tecture. The accuracy of the process of determining when two RDF molecules
are semantically equivalent in MINTE is impacted by the characteristics of the
similarity measure Simf . Collarana et al. report the best performance when the
GADES [369] similarity metric is used.

2.2 Summarization of Knowledge Graph

Another application of entity matching lies in the summarization of knowledge
graphs. A knowledge graph is an ontology combined with a collection of instances
that represents a collection of interlinked descriptions of entities. Knowledge
graphs often capture domain-specific knowledge in the form of a graph. It has a
data layer that contains the actual information and a semantic layer that repre-
sents the schema or the ontology. Typically knowledge graphs contain millions
of entities and billions of properties describing these entities. This can lead to
information overload, and therefore it is important to compress and summarize
knowledge graphs for efficient representation of data [175].

The task of entity summarization is an essential part of knowledge graph
summarization. Entity summaries allow the concise representation of the most
important information about a certain real-world object. In the process of entity
summarization, entity matching plays an important role. In order to summarize
entities that either refer to the same real-world entity or are similar according to
some summarization paradigm, it is first necessary to identify entities that be-
long in the same summary unit. For example, several knowledge graphs contain
information about Marie Curie, each containing hundreds of facts about her life.
For typical use cases, a summary containing a few basic items of information,
namely her name, birth year, occupation and notable contributions, is enough
to distinguish the most relevant aspects about her. To achieve this goal, it is
first required to isolate entities from each knowledge graph that refer to Marie
Curie. This is done using an entity matching technique. Knowledge graph sum-
marization can either be concise – containing only a subset of original facts, or
comprehensive – containing an overview for all the original facts. The need for
either a concise or a comprehensive summary depends on the particular case.

120 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

Knowledge graphs can also be summarized along different axes. For example,
information can be summarized based on the semantic layer, i.e. ontology. It can
also be summarized along different contextual layers, e.g., along time, geographic
location, etc. In Chapter Use Cases, a temporal summarization technique for
knowledge graph entities using COMET is described.

3 Novel Entity Matching Approaches

The problem of entity matching between disparate data sources is essential to
the field of data integration. This is because one of the primary tasks in data
integration is to reconcile varying schemas, thereby creating mapping entities
between different data sources. Multiple approaches for inter-schema mapping
exist both in the relational and graph database community. Multiple approaches
also exist for the Entity Summarization – another application of entity matching.

A substantial amount of research has also been done over the idea of context
and its role in data-driven tasks, particularly in the semantic web where the
concept of data is intricately related to its semantics. The bulk of this research
is limited to the formalization of context, although not much work has been done
in practically implementing this concept. The following are some of the related
carried out in formalizing context as well as a few practical approaches towards
data integration and entity summarization.

3.1 Context in the Semantic Web

Principles for Formalizing Context: Bozzato et al. [62] present an argument
that context needs to be represented in a more advanced manner in the Semantic
Web and Linked Open Data (LOD). They further define a set of properties that
a representation of context should abide by. These properties allow context to
be an integral part of RDF data and its reasoning. The properties are as follows:

1. Encapsulation: data that share the same context must be encapsulated for
ease in access and identification.

2. Explicit meta knowledge: contextual information must be represented in a
logical language.

3. Separation: there must be a way to clearly distinguish meta knowledge from
object knowledge.

4. Relationship: relationships between contexts must be explicitly represented.
5. Encapsulation: data that share the same context must be encapsulated for

ease in access and identification.
6. Contextual reasoning : the representation should allow for reasoning to be

done using the contextual knowledge.
7. Locality : each unit of context representation should allow the definition of

axioms which are valid only within the local scope.
8. Knowledge Lifting : it should be possible to reuse knowledge from one context

and apply it in another.

Chapter 8 Context-Based Entity Matching for Big Data 121

9. Overlap: the representation should allow for overlaps of knowledge between
different contexts.

10. Complexity invariance: the addition of this contextual layer should not in-
crease the complexity of reasoning.

The definition of context in COMET is guided by the principles defined
above. Our definition particularly focuses on implementing the properties of
Explicit meta knowledge and Contextual reasoning.

Fig. 2: Context Ontology for Data Integration (CODI) [407]. An overview
of contextual elements (CE) defined in the context ontology

Context Ontology for Data Integration (CODI) The Context Ontology
for Data Integration [407] was developed by Souza et al. to formally represent
context in data integration processes. They first define the concept of Contex-
tual Elements (CE) to represent the context of any domain-specific scenario.
This is shown in Figure 2. They then build a context ontology suited to the
domain-specific scenario after having meetings with domain experts. This con-
text ontology is then used during the reconciliation of schema during data inte-
gration. Although this approach works with the formal definition of context in
data integration scenarios, it is still quite expensive since it cannot work without
extensive input from domain experts in the modeling of the Context Ontology.
It also does not make use of the semantics already existing in the data instances
to guide its modeling of context.

3.2 Entity Matching Approaches

Applications in Data Integration Data Integration (DI) is one of the most
common applications that require entity matching. This matching is done at

122 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

either at a schema-level or at an instance-level. There are a number of approaches
that aim at the integration of disparate RDF data sources. We divide these works
based on whether they match ontologies, or the instances themselves.

Ontology Matching Approaches. Many of the data integration approaches
based on RDF data apply the concept of mapping heterogeneous data sources
to a common ontology. One approach using ontologies is KARMA, proposed by
Knoblock et al. [246]. This is a framework for integrating a variety of data sources
including databases, spreadsheets, XML, JSON, and Web APIs. KARMA im-
plements a hybrid approach that relies on supervised machine algorithms for
identifying mapping rules from structured sources to ontologies; these mapping
rules can be refined by users via a user interface.

Another approach is suggested by Schultz et al. [386], who describe the Linked
Data Integration Framework (LDIF). LDIF is oriented to integrate RDF datasets
from the Web and provides a set of independent tools to support interlinking
tasks. LDIF provides an expressive mapping language for translating data from
various vocabularies to a unified ontology. LDIF tackles the problem of identity
resolution by defining linking rules using the SILK tool [212]. Based on the
defined rules, SILK identifies owl:sameAs links among entities of two datasets.

Instance Matching Approaches In the task of identifying whether given
entities refer to the same real-world entity, growing attention in the relational
databases field is given to crowdsourcing mechanisms [241, 443]. Reporting im-
pressive results, such approaches, however, might struggle in sophisticated do-
mains with multiple contexts due to a lack of human experts who could reliably
provide necessary example data.

ODCleanStore [305] and UnifiedViews [245] are ETL frameworks for inte-
grating RDF data. ODCleanStore relies on SILK to perform instance matching
and provides custom data fusion modules to merge the data of the discovered
matches.

The MINTE framework proposed by Collarana et al. [83] also tackles the task
of matching entities in different datasets that correspond to the same real-world
entity by making use of the semantics encoded in the data itself. They first apply
a semantic similarity metric in order to identify semantically equivalent entities
from two different RDF graphs. Next they make use of a set of novel fusion
policies to merge these semantically equivalent entities. Although MINTE makes
use of the semantics encoded into the RDF graph itself, it does not consider the
context during the step of entity matching. The work done in COMET is in
essence a context-based extension of MINTE.

Applications in Entity Summarization. Entity summarization is the pro-
cess of creating a concise representation of an entity in order to describe the
whole entity. A number of approaches have been formulated in order to generate
summaries of entities [175]. One such approach is RELIN [78] by Cheng et al.

Chapter 8 Context-Based Entity Matching for Big Data 123

Fig. 3: Entity Summarization. Summarizing a single entity as envisioned by
LinkSum [422]

where they defined the problem of entity summarization using RDF graphs and
demonstrated its utility in entity identification. RELIN makes use of the PageR-
ank algorithm to select relevant features in the creation of the summary entity.
In 2014, Thalhammer and Rettinger proposed SUMMARUM [423], a dbpedia-
based entity summarization framework that also uses PageRank in order to rank
the features of an entity. It also uses the global popularity of DBPedia resources
corresponding to their Wikipedia pages. They later proposed LinkSum [422],
which in addition to PageRank also makes use of an adaptation of the Back-
Link method combined with new methods for predicate selection. These entity
summarization frameworks focus on the rank of features (attributes) in order to
create the summary, but do not take into consideration any contextual dimen-
sion of the data. The above-mentioned integration frameworks aim at mapping
different data sources with possibly varying schema, i.e., they perform inter-
schema mapping. Context-based integration could only be supported in these
frameworks on a superficial level via filtering query results without applying
many inherent semantics. Similarly, the entity summarization frameworks aim
at summarizing via some order of properties instead of considering contextual
information present in the data. Therefore, we identify a need for context-based
entity matching mechanisms and present our approach, which can be adapted
for both integration and summarization of RDF data.

124 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

Fig. 4: Entity Summarization. Summarizing a single entity as envisioned by
LinkSum [422]

4 COMET: a Context-Aware Matching Technique

To provide a solution to the problem of contextually matching RDF entities,
COMET – a context-aware RDF molecule matching technique – is proposed.
This technique is grounded on the semantic data integration techniques pro-
posed by Collarana et al. [83], whose work deals with matching and merging
RDF molecules that are semantically similar using semantic similarity metric
and fusion policies. This work makes use of the concepts of RDF molecules but
contributes a new approach as to taking into consideration the context of the sys-
tem while matching entities. COMET is an entity matching framework designed
to create, identify, and match contextually equivalent RDF entities. Grounded
on the entity matching component from the data integration technique proposed
by Collarana et al. [83], we propose COMET, an entity matching approach to
merge equivalent RDF entities based on context. Thus, a solution to the problem
of contextually matching entities is provided.

4.1 Problem Definition

RDF Molecule [83] – If Φ(G) is a given RDF Graph, we define RDF Molecule
M as a subgraph of Φ(G) such that,

M = {t1, . . . , tn}

∀ i, j ∈ {1, . . . , n}
(
subject(ti) = subject(tj)

)
Where t1, t2, . . . , tn denote the triples in M. In other words, an RDF Molecule
M consists of triples which have the same subject. That is, it can be repre-
sented by a tuple M = (R, T), where R denotes the URI of the molecule’s

Chapter 8 Context-Based Entity Matching for Big Data 125

(a) Φ(G), Φ(D) and Context C (b) Homomorphism θC (c) Idealized Fc

Fig. 5: Problem Definition. The left side shows two RDF Graphs the system
Context. The right side shows the application of homomorphism θC on the RDF
graphs, resulting in the formation of Contextualized RDF Graph Fc.

subject, and T denotes a set of property and value pairs p = (prop, val) such
that the triple (R, prop, val) belongs to M. For example, the RDF molecule
for Arnold Schwarzenegger is (dbr:Arnold-Schwarzenegger, { (dbo:occupation,
Politician), (dbp:title, Governor)}). An RDF Graph Φ(G) described in terms
of RDF molecules is defined as follows:

Φ(G) = {M = (R, T)|t = (R, prop, val) ∈ G ∧ (prop, val) ∈ T}

Context – We define a context C as any Boolean expression which represents
the criteria of a system. Two entities, such as an RDF molecule M1 and M2, can
be either similar or not similar with respect to a given context. That is, C is a
Boolean function that takes as input two molecules M1 and M2 and returns true
if they are similar according to system context, and false otherwise. Below is an
example of context C, modeled after the example presented in Figure 1, where
two molecules are similar if they have the same occupation. If P = (p, v) is the
predicate representing the occupation property of a molecule, then context.

C(M1,M2) =

{
true, if P ∈M1 ∧ P ∈M2.

false, otherwise.

Depending on the requirements of the integration scenario, this context can be
any Boolean expression.

Semantic Similarity Function – Let M1 and M2 be any two RDF molecules.
Then semantic similarity function Simf is a function that measures the semantic

126 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

similarity between these two molecules and returns a value between [0,1]. A
value of 0 expresses that the two molecules are completely dissimilar and 1
expresses that the molecules are identical. Such a similarity function is defined
in GADES [369].

Contextually Equivalent RDF Molecule – Let Φ(G) and Φ(D) be two sets of
RDF molecules. Let MG and MD be two RDF molecules from Φ(G) and Φ(D),
respectively. Then, MG and MD are defined as contextually equivalent iff

1. They are in the same context. That is, C(M1,M2) = true

2. They have the highest similarity value, i.e.,
Simf (MG,MD) = max(∀m∈Φ(D)Simf (MG,m))

Let Fc be an idealized set of contextually integrated RDF molecules from Φ(G)
and Φ(D). Let θC be a homomorphism such that θC : Φ(G)∪Φ(D)→ Fc. Then
there is an RDF Molecule MF from Fc such that θ(MD) = θ(MG) = MF . From
the motivation example, this means that the molecule of Arnold Schwarzenegger,
the politician, is contextually equivalent to the molecule of Donald Trump as they
are similar and they satisfy the context condition of having the same occupation.

In this work, we tackle the problem of explicitly modeling the context and
then matching RDF molecules from RDF graphs that are both highly similar
and equivalent in terms of this context. This problem is defined as follows: given
RDF graphs Φ(G) and Φ(D), let MG and MD be two RDF molecules such that
MG ∈ Φ(G) and MD ∈ Φ(D). The system is supplied with a context parameter
C, which is a Boolean function evaluating if two molecules are in the same
context. It is also supplied with a similarity function Simf , which evaluates the
semantic similarity between MG and MD.

The problem of creating a contextualized graph ΦC consists of building a ho-
momorphism θC : Φ(G)∪Φ(D)→ Fc, such that for every pair of RDF molecules
belonging to ΦC there are none that are contextually equivalent according to sys-
tem context C. If MG and MD are contextually equivalent molecules belonging
to Fc, then θC(MG) = θC(MD), otherwise θC(MG) 6= θC(MD).

An example of this problem is illustrated in Figure X, which depicts a use
case with two RDF graphs and a single context condition C. With respect to C,
the RDF molecule Arnold.S from Φ(G) is in the same context as Donald.T from
Φ(D), but not in the same context as the molecule Arnold.S from Φ(G). So the
problem is to identify a homomorphism θC which evaluates the RDF molecules
based on system context and maps these RDF molecules in a way that they can
be integrated into a contextualized graph.

4.2 The COMET Architecture

We propose COMET, an approach to match contextually equivalent RDF graphs
according to a given context, thus providing a solution to the problem of con-
textually matching RDF graphs. Figure 6 depicts the main components of the
COMET architecture. COMET follows a two-fold approach to solve the problem

Chapter 8 Context-Based Entity Matching for Big Data 127

of entity matching in RDF graphs in a context-aware manner: First, COMET
computes the similarity measures across RDF entities and resorts to the Formal
Concept Analysis algorithm to map contextually equivalent RDF entities. Fi-
nally, COMET combines the results of the first step and executes a 1-1 perfect
matching algorithm for matching RDF entities based on the combined scores to
finally synthesize the matching into a contextualized RDF graph.

Simf

Dataset Partitioner
(Threshold γ) 1-1 Perfect Matching Calculator

Φ(G)

Φ(D)

Semantic and Context
Similarity Calculator

(Context C)

G D

Weighted Bipartite Graph

σ

C

5

6

7

8

2

4

1

3

72

84

61

,

,

,
0.1

0.2

0.5

0.8

Pruning edges with FCA

53 ,

Contextually
Equivalent RDF

Entities

Scoring Contextually Equivalent Entities 1-1 Context-Aware Matching

0.2

0.3

0.7

G D

5

6

7

8

2

4

1

3

0.5

0.8

0.7

Context-aware best Matches

Fig. 6: The COMET Architecture. COMET receives two RDF datasets, e.g.,
G and D; a similarity function Simf ; and a context C. The output is a set of
contextually matching RDF entities.

4.3 Identifying Contextually Equivalent Entities

Building a bipartite graph The COMET pipeline receives two RDF graphs
Φ(G), Φ(D) as input, along with context parameter C, and a similarity function
Simf . COMET first constructs a bipartite graph between the sets φ(G) and
φ(D). The Dataset Partitioner employs a similarity function Simf and ontology
O to compute the similarity between RDF molecules in φ(G) and φ(D) assigning
the similarity score as vertices weight in the bipartite graph. COMET allows for
arbitrary, user-supplied similarity functions that leverage different algorithms to
estimate similarity between RDF molecules. Thus, COMET supports a variety of
similarity functions including simple string similarity. However, as shown in [83],
semantic similarity measures are advocated (in the implementation of this work
we particularly use GADES [369]) as they achieve better results by considering
semantics encoded in RDF graphs.

After RDF molecules similarity comparison, the result of the similarity func-
tion is tested against a threshold γ to determine entity similarity (the similarity
threshold’s minimum acceptable score). Thus, edges are discarded from the bi-
partite graph whose weights are lower than γ. A threshold equal to 0.0 does
not impose any restriction on the values of similarity; thus the bipartite graph
includes all the edges. High thresholds, e.g. 0.8, restrict the values of similarity,
resulting in a bipartite graph comprising just a few edges.

128 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

(a) Bipartite graph
after applying
threshold γ = 0.5

(b) Context validation using FCA (c) Perfect 1-1
matches

Fig. 7: Context Validation. The left side shows a bipartite graph after the
application of threshold. The remaining edges go through a special 1-1 matching
algorithm which takes into account the system context using FCA. The result is
a perfect match between contextually equivalent molecules.

Pruning RDF Entities according to ContexB The main step on the
COMET pipeline is to validate and prune pairs of RDF molecules that do not
comply with the input context C, making COMET a context-aware approach.
For identifying contextually equivalent RDF entities, the Context Validator com-
ponent employs the Formal Concept Analysis (FCA) algorithm. FCA is the study
of binary data tables that describe the relationship between objects and their at-
tributes. Applying this context validation step over the RDF molecules ensures
that only contextually relevant tuples are kept. In COMET, context is mod-
eled as any Boolean function. Two molecules are matched if they satisfy this
condition, otherwise they are not matched. The algorithm by V. Vychodil [448]
is applied in COMET; it performs formal concept analysis to compute formal
concepts within a set of objects and their attributes. This algorithm is extended
in our approach for validating complex Boolean conditions. A typical formal
concept analysis table is shown in Table 1.

Instead of using attributes in the column of the FCA matrix, in our approach,
we replace the attributes with a boolean condition C. This is the same as the
context condition C used in our approach. For example, the context C from
the motivating example can be broken down into C = C1 ∧ C2 where C1 =
”contains property dbo:occupation”, and C2 = ”has the same value for property

Chapter 8 Context-Based Entity Matching for Big Data 129

Attribute 1 Attribute 2 Attribute 3

Object 1 X X

Object 2 X

Object 3 X X

Table 1: Object-Attribute table for performing FCA.

dbo:occupation”. The execution of the FCA algorithm remains unchanged by
this adaptation since the format of the input to FCA is still a binary matrix.

When applied to RDF molecules, formal concept analysis returns a set of
formal concepts < M,C > where M is a set of all the molecules that contain all
conditions contained in C. That is, by applying FCA, the set of molecules that
satisfy a certain context condition can be obtained. Thus, the molecules that do
not meet the context condition are pruned. In Figure 7, an example of context
validation is demonstrated. Edges in a bipartite graph are filtered according to a
threshold value γ as detailed in the previous section. Next, the remaining edges
are validated by constructing an FCA matrix according to context condition
C. The FCA algorithm returns the edge satisfying the context conditions. The
edges that do not satisfy the context condition are discarded.

4.4 The 1-1 Perfect Matching Calculator

COMET solves the problem of context-aware entity matching by computing a
1-1 weighted perfect matching between the sets of RDF molecules. The input
of the 1-1 weighted perfect matching component is the weighted bipartite graph
created on the previous step. Since each weight of an edge between two RDF
molecules corresponds to a combined score of semantic similarity and context
equivalence value, we call this a 1-1 context-aware matching calculator. The effect
of this 1-1 context aware matching calculator is demonstrated in Figure 9 Finally,
a combinatorial optimization algorithm like the Hungarian algorithm [265] is
utilized to compute the matching.

4.5 Integration Use Case: Applying Fusion Policies

In order to apply this context-aware entity matching pipeline into a data inte-
gration scenario, we envision the usage of fusion policies defined by Collarana
et al. [83]. To consolidate entities identified as contextually equivalent, COMET
can make use of synthesis policies, i.e. a user-supplied function that defines how
the RDF molecules should be combined to form a connected whole. COMET
can adopt the following synthesis policies:

1. The Union Policy, which includes all predicates-object pairs, removing the
one that is syntactically the same;

2. The Linking Policy, which produces owl:sameAs links between contextually
equivalent RDF molecules;

130 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

Algorithm 1: closure(B,y)

1 for j ← 0 to n do

2 D[j]← 1;

3 foreach i in rows[y] do

4 match← True;

5 for j ← 0 to n do

6 if

{
B[j] = 1

context[i, j] = 0
then

7 match← False;

8 break for loop;

9 if match = True then

10 for j ← 0 to n do

11 if context[i, j] = 0 then

12 D[j]← 0;

13 return D

Algorithm 2: generate(B,y)

1 process B ; // Printing B

2 if B = Y | y > n then

3 return

4 for j ← y to n do

5 if B[j] = 0 then

6 B[j]← 1;

7 D ← closure(B,j);

8 skip← False;

9 for k ← 0 to j − 1 do

10 if D[k] 6= B[k] then

11 skip← True;

12 break for loop;

13 if skip = False then

14 generate(D,j + 1);

15 B[j]← 0;

16 return

Fig. 8: Implemented algorithms (extended from [448]).

3. The Authoritative Policy, which allows for defining one RDF graph as a
prevalent source selecting its properties in case of property conflicts, i.e.,
properties annotated as owl:FunctionalProperty, equivalent properties
owl:equivalentProperty, and equivalent classes annotated with owl:sameAs

or owl:equivalentClass.

By applying these policies, the end output is a synthesized graph with linked
entities that are contextually equivalent. In the next chapter, we take a look at
another use case of context-aware entity matching: the temporal summarization
of knowledge graph entities.

5 Empirical Evaluation

This section presents an overview of the technical details, execution and the
results obtained in the empirical evaluation.

5.1 Research Questions

We conducted an empirical evaluation to study the effectiveness and performance
of COMET in solving the entity matching problem among RDF graphs. We
address the following research questions:

– (RQ1) Is COMET able to perform entity matching with regard to context
more accurately than the MINTE [83] entity matching component?

– (RQ2) Does the content of the dataset with respect to the context condition
affect the accuracy of COMET?

Chapter 8 Context-Based Entity Matching for Big Data 131

(a) Original bipartite graph
with γ=0.5

(b) 1-1 matching without
context validation

(c) 1-1 matching with context
validation

Fig. 9: The 1-1 Perfect Matching. COMET applies a special 1-1 perfect
matching algorithm which evaluates context as well as similarity between two
molecules. A traditional 1-1 perfect matching algorithm only considers similar-
ity (weight of edges). Without evaluating context, the 1-1 matching algorithm
matches molecules that are not in the same context. When context is evaluated
alongside similarity, molecules in the same context are matched.

– (RQ3) How much overhead does the context-evaluation step in COMET
add to the overall pipeline?

(RQ1) and (RQ2) are combined to conduct Experiment 1 in order to
evaluate the effectiveness or accuracy of COMET. (RQ3) is addressed by Ex-
periment 2 where the overhead of the context-evaluation step is measured.

5.2 Implementation

Practically, COMET is implemented in Python and hosted in GitHub5 along
with the datasets and logs used in this evaluation. The experiments were exe-
cuted on a Windows 10 (64 bits) machine with CPU: Intel Core i7-8650U 1.9 GHz
(4 physical cores) and 16 GB RAM. For the COMET pipeline we use the seman-
tic similarity measure GADES [369], which Collarana et al. have previously
demonstrated to have the best performance in terms of accuracy when added
to their MINTE pipeline [83]. GADES relies on semantic description encoded
in ontologies to determine relatedness. GADES examines both string similarity
and hierarchy similarity by making use of graph neighbourhoods.

5 https://github.com/RDF-Molecules/COMET

132 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

Experiment 1: Effectiveness

Configuration A B C

Datasets A1 A2 B1 B2 C1 C2

Molecules 1000 1000 1000 1000 1000 1000

Triples 70,660 70,660 70,776 70,776 71,124 71,124

Context C(MD1,MD2) = true, if dbo:occupation match

Experiment 2: Runtime

Datasets XS1 XS2 S1 S2 M1 M2 L1 L2

Molecules 100 100 500 500 1,000 1,000 2,000 2,000

Triples 7,084 7,084 33,916 33,916 71,124 71,124 138,856 138,856

Table 2: Benchmark Description. Datasets used in the evaluation including:
number of RDF molecules (M), number of triples (T), evaluated contexts (C).

5.3 Baseline

As a baseline, we compare the effectiveness of COMET against the MINTE
pipeline proposed by Collarana et al. [83]. Towards (RQ1) and (RQ2) we design
an experiment to measure the precision, recall and f-measure of COMET in
comparison to MINTE. We also run COMET and MINTE on datasets with
different compositions of molecules with respect to context in order to observe
the effect of contextual content of datasets on the effectiveness of COMET.
Towards (RQ3), we observe the impact of COMET context-evaluation step on
temporal and memory performance.

5.4 Effectiveness Evaluation

Metrics. Although each experiment has different datasets and gold standards,
we use the same metrics for all the experiments: Precision, Recall, and F-meaure.
Precision measures what proportion of the performed entity matches are actu-
ally correct. That is, precision is the fraction of RDF molecules that has been
identified as contextually equivalent by COMET (C), which intersects with the
Gold Standard (GS). On the other hand, recall measures the overall propor-
tion of integrated RDF molecules that were identified correctly. That is, recall
is measured by the fraction of correctly identified similar molecules with respect

to the Gold Standard,i.e., Precision = |C∩GS|
|C| and Recall = |C∩GS|

|GS| . F-measure

is the harmonic mean of Precision and Recall.

Datasets For this experiment, we use datasets containing 1,000 people entities
from DBpedia. In order to test the effect of contextual data content on the accu-
racy of COMET, three pairs of datasets (A1, A2), (B1, B2), and (C1, C2) are
generated using configurations A, B, and C, respectively. These configurations
are as follows:

Chapter 8 Context-Based Entity Matching for Big Data 133

1. Configuration A: Every molecule a1 in dataset A1 has 2 highly similar
molecules a2 and a3 in dataset A2, such that a2 satisfies context condition,
but a3 does not. That is, C(a1, a2) = true and C(a1, a3) = false.

2. Configuration B: Every molecule b1 in dataset B1 has 3 highly similar
molecules b2, b3 and b4 in dataset B2, such that b2 and b3 satisfy the
context but b4 does not.

3. Configuration C: Every molecule c1 in dataset C1 has 4 highly similar
molecules in dataset C2, two of which satisfy the context condition, and two
that do not.

(a) Molecule A has only one
perfect match

(b) Molecule A has two per-
fect matches

(c) Molecule A has three per-
fect matches.

Fig. 10: Effect of dataset content on matching accuracy. The goal of
COMET is to choose the most similar molecule which is also in the same con-
text. With a higher number of similar molecules within the same context, the
probability of COMET choosing the correct match every time decreases.

The motivation of curating datasets using these three configurations is as
follows: As seen in Section 4, COMET applies a special 1-1 perfect matching
algorithm to find the best match according to both similarity and context con-
dition. For this reason, the varying number of highly similar molecules that are
also in the same context will affect the way COMET performs on the dataset.
A higher number of similar molecules in the same context means a lesser chance
of COMET identifying the correct match.

This is demonstrated in Figure 10. Here, circles displaying the same color
denote that they are molecules in the same context. In Figure 10a, molecule
A has only one perfect match available in the matching dataset and COMET
makes this match accordingly. But in Figure 10b and 10c, the number of perfect
matches within the same context increases to two and three, respectively. This
means that the probability of COMET identifying the true match for Molecule

134 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

COMET MINTE

Configuration Precision Recall F-Measure Precision Recall F-Measure

A 1.0 1.0 1.0 0.54 0.54 0.54

B 0.708 0.708 0.708 0.449 0.449 0.449

C 0.558 0.558 0.558 0.408 0.408 0.408

Table 3: Effectiveness evaluation of COMET.

A decreases. Therefore we aim to evaluate exactly how the varying numbers of
similar molecules in a dataset affect the accuracy of COMET.

Every pair of datasets is synthesized as follows: First, molecules from the
original set of 1,000 DBpedia person entities are duplicated according to the
configuration condition to create n number of highly similar molecules in the
second dataset. Then predicates inside the similar molecules are randomly edited
and deleted to create some variation of similarity. The predicates are then edited
to ensure that the correct number of similar molecules in the second dataset
satisfy the context according to the original dataset.

Context and Gold Standard Similar to the motivation example shown in
Figure 1, the context C used in this experiment checks if two molecules have
the same value for the predicate dbo:occupation. The Gold Standard contains
matches between molecules that (i) satisfy the context condition; and (ii) are
highest in similarity among all other molecules. For every pair of datasets be-
longing to the three configurations (i.e. configuration A, B and C), there is a
corresponding Gold Standard GA, GB and GC . The datasets, gold standard and
the experiment code are all available on GitHub.

Experiment 1: Contextually Matching DBpedia RDF Molecules Ta-
ble 2 describes the dataset used during our evaluations. This experiment was
conducted on MINTE and COMET once for each pair of datasets (A1, A2),
(B1, B2) and (C1, C2), with the context condition requiring that every pair
of matched molecules must have the same value for dbo:occupation property.
The threshold value γ for this experiment is applied at the 97th percentile in
every case. Then comparing against the Gold Standard GA, GB and GC for
configurations A, B and C respectively, the metrics Precision and Recall were
calculated each time. The results are presented in Table 3.

Experiment 2: Impact of Context Evaluation on Performance In addi-
tion to the previous reported experiments focusing on effectiveness, we also pay
particular attention to the evaluation of performance. Indeed, we specifically
design an experiment to analyze how much overhead is added to COMET for
evaluating context in its entity matching pipeline with respect to MINTE, which
does not evaluate context.

Chapter 8 Context-Based Entity Matching for Big Data 135

Metrics. During our tests, we monitored each task by measuring not only
execution time but a broader set of metrics:

– Time (seconds): measures the time used to process the various tasks and
sub-tasks relevant in our study;

– Memory (& SWAP) (Bytes): allows for keeping track of the memory alloca-
tions during the experiments; the idea is to search for possible bottlenecks
caused due to adding context evaluation to our approach.

– CPU usage (Percentage): simply records the processing activity.

Datasets Table 2 reports on the datasets used during this set of experi-
ments. As shown, we fed COMET with four datasets, each one involving more
triples than the previous ones; they contain from 7 000 up to 100,000 triples.
The molecules range from sets of 100 to 2,000.

Since COMET performs analysis of molecules both in its creation of bipartite
graphs and context evaluation step, we wanted to observe how the performance
is affected by increases in molecule number.

Temporal performance. In Figure 11, we present the obtained results with
the datasets XS, S, M, and L. This representation is twofold. Firstly, the bar
chart represents for each dataset the time distribution according to the various
phases which COMET involved: i.e. computing similarity in a bipartite graph,
evaluating context using FCA computation, and performing 1-1 perfect matching
in blue, purple, and yellow, respectively. Secondly, the red curve presents for
each dataset the total time required to run the experiment; notice that we use
a logarithmic scale. As a consequence, we successfully find experimentally that
the context evaluation step does not take any more time than the other phases.
As shown in the bars of Figure 11, the purple section representing the context
evaluation step does occupy a greater percentage of the total runtime as the size
of the dataset increases, but it still consumes less than half of the runtime in
comparison to the other phases.

Memory consumption. To analyze how the memory is used by COMET
during its experimental runs, we pay attention to the RAM & SWAP consump-
tion for each dataset tested; in addition we also recorded the CPU usage. It
appears that COMET did not use much of the resources to run the experiments
with the datasets. Moreover, we even observed that the pressure on the CPU
and the amount of memory used by the system at every second is almost the
same for all the considered datasets. This, therefore, means that the current
implementation of COMET rather spreads its computations along the time (see
again the red curve of Figure 11) instead of allocating more resources when the
dataset size increases.

5.5 Discussion of Observed Results

Based on the values of Precision, Recall, and F-measure reported in Experiment
1 (Table 3), we can positively answer (RQ1), and (RQ2) i.e., COMET is able to
effectively match entities across RDF graphs according to context, and indeed

136 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

0

20

40

60

80

100

XS S M L

Datasets

P
ro

p
o
rt

io
n

(%
)

Similarity FCA Perfect Matching

100

101

102

103

104

T
o
ta

l
ti

m
e

(s
)

Total time

Fig. 11: Temporal performance for datasets XS, S, M and L. The bars
along the y-axis represent the time distribution required for each of the phases of
COMET. The red curve presents the total time required to run the experiment
in logarithmic scale.

the content of the datasets does affect the accuracy. In every case, COMET
performs better than MINTE, and the reason is clear – MINTE does not take
context into consideration during its 1-1 perfect matching whereas COMET does.
Moreover, the decrease in precision in recall of COMET with the increase of the
number of highly similar molecules within the dataset also makes sense. With a
higher number of similar molecules to choose from, COMET has less of a chance
of correctly identifying the perfect match. On the other hand, in the case of
configuration A, the precision and recall is perfect. This is because the dataset
in configuration A supplies only 1 perfect option (a highly similar molecule that
also meets the context). The perfect precision and recall demonstrate that in an
ideal condition with only 1 perfect option, COMET will always match correctly.

By observing the temporal performance (Figure 11) and memory consump-
tion of COMET when supplied with datasets of increasing volumes, we can also
answer (RQ3), i.e., by measuring the amount of overhead the context-evaluation
step of COMET adds to the overall pipeline. We show that the context evalua-
tion step adds a fraction of the temporal overhead with respect to a traditional
1-1 matching algorithm, and does not have any observable overhead in terms of
memory consumption.

6 Grand Challenges and Conclusions

In the age of data variety, adding and considering data context is more impor-
tant than ever. Context lends information to its scope of validity and affects
most data-driven tasks, such as data integration. In this chapter, we presented
COMET – an approach to match contextually equivalent RDF entities from dif-
ferent sources into a set of 1-1 perfect matches between entities. COMET follows
a two-fold approach where first contextually equivalent RDF molecules are iden-

Chapter 8 Context-Based Entity Matching for Big Data 137

tified according to a combined score of semantic and context similarity. Then, a
1-1 perfect matching is executed to produce a set of matches considering con-
text. COMET utilizes the Formal Concept Analysis algorithm to decide when-
ever two RDF molecules are contextually equivalent. The behavior of COMET
was empirically studied on two real-world RDF graphs under different context
configurations. The observed results suggest that COMET is able to effectively
identify and merge contextually equivalent entities in comparison to a baseline
framework which does not consider context. We also envision an approach for
creating entity summaries automatically out of different temporal versions of a
knowledge graph. To do so, the proposed approach utilizes the concepts of RDF
molecules, Formal Concept Analysis, and Fusion Policies. The entity evolution
summaries created by the approach may serve to create documentation, to dis-
play a visualization of the entity evolution, or to make an analysis of changes.

This work is a first step in the direction of the formalization of context and
its effect on data-driven tasks. Therefore, there are still grand challenges to
face towards consolidating context-based similarity approaches. Thus, we present
the four grand challenges that should be tackled as next steps, i.e.: 1) measuring
context with probabilistic functions; 2) the performance of the context-aware
matching algorithms; 3) full usage of the semantic representation of entities as
knowledge graphs; and furthermore, 4) the application of context-aware entity
matching on a variety of data-driven tasks.

We now describe them in detail:

1. Measuring context with probabilistic functions: In this chapter, we
employ a straightforward definition of context conditions, i.e. modeling con-
text as a Boolean function of entities. According to this model, an entity is
either valid within a context or invalid. The real-world meaning and scope
of context are much more general, and therefore context should be modeled
in a more generalized way. For example, the measure of the validity of an
entity concerning different contexts can be a probabilistic function. Meaning
the range of the context function could be any value between the interval
[0,1] instead of being only 0 or 1. We suggest the use of Probabilistic Soft
Logic (PSL) to implement this concept.

2. Performance: Although in this chapter, we focus on the variety dimension
of big data, context-based approaches should apply to the volume dimension
as well. In COMET, for example, the complexity of the 1-1 matching algo-
rithm is quadratic as COMET employs the original Formal Concept Analysis
algorithm. As such, it is possible to evaluate a distributed version of the For-
mal Concept Analysis algorithm that may improve the run-time overhead in
this work. Big data frameworks such as Hadoop and Spark can be used in
the implementation of this distributed version of COMET.

3. Exploitation of the semantic representation of entities: The proposed
approach, presented in this chapter, utilizes the knowledge encoded in RDF
graphs themselves to create context parameters. Nevertheless, not all the
potential of semantics has been studied to improve the accuracy of context-
based matching approaches. A natural next step, for example, would be

138 Mayesha Tasnim, Diego Collarana, Damien Graux, and Maria-Esther Vidal

to take advantage of the implicit knowledge encoded in RDF Knowledge
Graphs. Employing a reasoner additional contextual data can be inferred,
empowering the modeling and evaluating of context.

4. Application of context-aware matching on various data-driven tasks:
We mentioned during the chapter the application of the COMET approach in
the entity summarization use-case. Tasnim et al. [420] show the architecture
and pipeline modifications to COMET in order to produce a summary along
one contextual axis, i.e. temporal axis. The approach can be adapted to other
contextual axes, e.g., geographic location, hierarchical position, and more.
Depending on the contextual axis, many more use cases of context-aware
entity matching can be explored. Also, the elements used in the creation of
the entity evolution summary, e.g., the ontology, can be investigated and
further developed to empower the approach.

