
Chapter 5
Federated Query Processing

Kemele M. Endris1,2, Maria-Esther Vidal1, and Damien Graux3

1 TIB Leibniz Information Centre For Science and Technology, Hannover, Germany
2 L3S Research Center, Hannover, Germany

3 ADAPT SFI Research Centre, Trinity College Dublin, Ireland

Abstract. Big data plays a relevant role in promoting both manufactur-
ing and scientific development through industrial digitization and emerg-
ing interdisciplinary research. Semantic web technologies have also ex-
perienced great progress, and scientific communities and practitioners
have contributed to the problem of big data management with ontologi-
cal models, controlled vocabularies, linked datasets, data models, query
languages, as well as tools for transforming big data into knowledge from
which decisions can be made. Despite the significant impact of big data
and semantic web technologies, we are entering into a new era where
domains like genomics are projected to grow very rapidly in the next
decade. In this next era, integrating big data demands novel and scalable
tools for enabling not only big data ingestion and curation but also ef-
ficient large-scale exploration and discovery. Federated query processing
techniques provide a solution to scale up to large volumes of data dis-
tributed across multiple data sources. Federated query processing tech-
niques resort to source descriptions to identify relevant data sources for a
query, as well as to find efficient execution plans that minimize the total
execution time of a query and maximize the completeness of the answers.
This chapter summarizes the main characteristics of a federated query
engine, reviews the current state of the field, and outlines the problems
that still remain open and represent grand challenges for the area.

1 Introduction

The number and variety of data collections have grown exponentially over recent
decades and a similar growth rate is expected in the coming years. In order to
transform the enormous amount of disparate data into knowledge from where
actions can be taken, fundamental problems, such as data integration and query
processing, must be solved. Data integration requires the effective identification
of entities that, albeit described differently, correspond to the same real-world
entity. Moreover, data is usually ingested in myriad unstructured formats and
may suffer reduced quality due to biases, ambiguities, and noise. These issues im-
pact on the complexity of the solutions for data integration. Semantic integration
of big data entails variety by enabling the resolution of several interoperability
conflicts [159, 444], e.g., structuredness, schematic, representation, completeness,



70 Kemele M. Endris, Maria-Esther Vidal, and Damien Graux

granularity, and entity matching conflicts. Conflicts arise because data sources
may have different data models or none, follow various schemes for data rep-
resentation, and contain complementary information. Furthermore, a real-world
entity may be represented using diverse properties or at various levels of de-
tail. Thus, techniques able to solve interoperability issues while addressing data
complexity challenges imposed by big data characteristics are required [400].

Existing solutions to the problem of query processing over heterogeneous
datasets rely on a unified interface for overcoming interoperability issues, usu-
ally based on metamodels [223]. Different approaches have been proposed, mainly
with a focus on data ingestion and metadata extraction and management. Exem-
plary approaches include GEMMS [363], PolyWeb [243], BigDAWG [118], On-
tario [125], and Constance [179]. These systems collect metadata about the main
characteristics of the heterogeneous data collections, e.g., formats and query ca-
pabilities. Additionally, they resort to a global ontology to describe contextual
information and relationships among data sets. Rich descriptions of the prop-
erties and capabilities of the data have shown to be crucial for enabling these
systems to effectively perform query processing.

In the context of the Semantic Web, the problem of federated query process-
ing has also been actively studied. As a result, diverse federated SPARQL query
engines have been defined that enable users to execute queries over a federation
of SPARQL endpoints. State-of-the-art techniques include FedX [387], ANAP-
SID [6], and MULDER [124]. FedX implements adaptive techniques to identify
relevant sources to evaluate a query. It is able to contact SPARQL endpoints on
the fly to decide the subqueries of the original query that can be executed over
the endpoints of the federation. ANAPSID makes use of metadata about the vo-
cabularies used on the RDF datasets to perform source selection. Based on the
selected sources, ANAPSID decomposes original queries and finds efficient plans
to collect the answers incrementally. Finally, MULDER resorts to description of
the RDF datasets based on the classes and relations of the dataset vocabularies.
MULDER proposes the concept of the RDF Molecule Templates (RDF-MTs)
to describe the datasets and efficiently perform source selection and query plan-
ning. The rich repertoire of federated query engines just reveals the importance
of query processing against the RDF dataset, as well as the attention that the
problem has received from the database and semantic web communities.

The contributions of the work are summarized as follows:

– A description of the concept of the data integration system and an analysis
of the different parameters that impact on the complexity of a system.

– A characterization of the challenges addressed by federated query engines
and analysis of the current state of the federated query processing field.

– A discussion of the analysis of the grand challenges in this area and future
directions.

The remainder of the chapter is structured as follows: Section 2 presents an
overview of the data integration system and the roles that they play in the prob-
lem of accessing and processing queries over heterogeneous data sources. Section
3 describes the problem of federated query processing, the main challenges to be



Chapter 5 Federated Query Processing 71

addressed by a federated query engine, and the state of the art. Finally, grand
challenges and future directions are outlined in Section 4.

2 Data Integration Systems

An enormous amount of data is being published on the web [377]. In addition, dif-
ferent data sources are being generated and stored within enterprises as well due
to technological advances in data collection, generation, and storage. These data
sources are created independently of each other and might belong to different
administrative entities. Hence, they have different data representation formats
as well as access interfaces. Such properties of the data sources hinder the usage
of the information available in them. Data integration is the process of providing
uniform access to a set of distributed (or decentralised), autonomous, and het-
erogeneous data sources [113]. Data integration systems provide a global schema
(also known as mediated schema) to provide a reconciled view of all data avail-
able in different data sources. Mapping between the global schema and source
schema should be established to combine data residing in data sources consid-
ered in the integration process. Generally, data integration system is formally
defined as follows [278]:

Definition 1 (Data Integration System). A data integration system, I, is
defined as a triple < G,S,M >, where:

– G is the global schema, expressed in a language LG over an alphabet AG.
The alphabet comprises a symbol for each element of G.

– S is the source schema, expressed in a language LS over an alphabet AS.
The alphabet AS includes a symbol for each element of the sources.

– M is the mapping between G and S, constituted by a set of assertions of the
forms: qS → qG, qG → qS; where qS and qG are two queries of the same
arity, respectively over the source schema S, and over the global schema
G. An assertion specifies the connection between the elements of the global
schema and those of the source schema.

Defining schema mapping is one of the main tasks in a data integration system.
Schema mapping is the specification of correspondences between the data at the
sources and the global schema. The mappings determine how the queries posed
by the user using the global schema are answered by translating to the schema
of the source that stores the data. Two basic approaches for specifying such
mappings have been proposed in the literature for data integration systems are
Global-as-View(GAV) [139, 180] and Local-as-View(LAV) [280, 431].

Rules defined using the Global-as-View (GAV) approach define concepts in
the global schema as a set of views over the data sources. Using the GAV ap-
proach, the mapping rules in M define the concepts of the schema in the sources,
S, with each element in the global schema. A query posed over the global schema,
G, needs to be reformulated by rewriting the query with the views defined in,
M . Such rewriting is also known as query unfolding – the process of rewriting



72 Kemele M. Endris, Maria-Esther Vidal, and Damien Graux

the query defined over global schema to a query that only refers to the source
schema. Conceptually, GAV mappings specify directly how to compute tuples
of the global schema relations from tuples in the sources. This characteristics
of GAV mappings makes them easier for query unfolding strategy. However,
adding and removing sources in the GAV approach may involve updating all
the mappings in the global schema, which requires knowledge of all the sources.
Mappings specified using the Local-as-View (LAV) approach describe the data
sources as views over the global schema, contrary to the GAV approach that de-
fines the global schema as views over the data sources. Using the LAV approach,
the mapping rules in M associates a query defined over the global schema, G,
to each elements of source schema, S. Adding and removing sources in LAV is
easier than GAV, as data sources are described independently of each other. In
addition, it allows for expressing incomplete information as the global schema
represents a database whose tuples are unknown, i.e., the mapping M defined
by LAV approach might not contain all the corresponding sources for all the
elements in the global schema, G. As a result, query answering in LAV may
consist of querying incomplete information, which is computationally more ex-
pensive [113].

In this chapter, we define a source description model, RDF Molecule Tem-
plate (RDF-MT), an abstract description of entities that share the same char-
acteristics, based on the GAV approach. The global schema is defined as a con-
solidation of RDF-MTs extracted from each data source in the federation. Rule-
based mappings, such as RML, are used to define the GAV mappings of heteroge-
neous data sources. RDF-MTs are merged based on their semantic descriptions
defined by the ontology, e.g., in RDFS.

2.1 Classification of Data Integration Systems

Heterogeneity

Distribution

Autonomy

Fig. 1: Dimensions of Data Integration Systems

Data integration systems can be classified with respect to the following three
dimensions: autonomy, distribution, and heterogeneity [336], Figure 1. Auton-
omy dimension characterizes the degree to which the integration system allows



Chapter 5 Federated Query Processing 73

each data source in the integration to operate independently. Data sources have
autonomy over choice of their data model, schema, and evolution. Furthermore,
sources also have autonomy to join or leave the integration system at any time
as well as to select which fragments of data to be accessible by the integration
system and its users. Distribution dimension specifies the data that is physically
distributed across computer networks. Such distribution (or decentralization)
can be achieved by controlled distribution or by the autonomous decision of the
data providers. Finally, heterogeneity may occur due to the fact that autonomous
development of systems yields different solutions, for reasons such as different
understanding and modeling of the same real-world concepts, the technical en-
vironment, and particular requirements of the application [336]. Though there
are different types of heterogeneity of data sources, the important ones with re-
spect to data interoperability are related to data model, semantic, and interface
heterogeneity. Data model heterogeneity captures the heterogeneity created by
various modeling techniques such that each data model has different expressive
power and limitations, e.g., relational tables, property graph, and RDF. Seman-
tic heterogeneity concerns the semantics of data and schema in each source. The
semantics of the data stored in each source are defined through the explicit def-
inition of their meanings in the schema element. Finally, interface heterogeneity
exists if data sources in the integration system are accessible via different query
languages, e.g., SQL, Cypher, SPARQL, and API call.

Fig. 2: Classification of Data Integration Systems

Figure 2 shows different classifications of data integration systems with re-
spect to distribution and heterogeneity dimensions. The first type of data in-
tegration systems, Figure 2.(1), loads heterogeneous data from data sources to
a centralized storage after transforming them to a common data representation
format. The second type of data integration systems, Figure 2.(2), supports data



74 Kemele M. Endris, Maria-Esther Vidal, and Damien Graux

distributed across networks; however, they only support if the data sources in
the system are homogeneous in terms of data model and access methods. The
third type of data integration systems, Figure 2.(3), supports data heterogeneity
among data sources in the integration system. However, these data integration
systems are managed in a centralized way and data is stored in a distributed
file system (DFS), such as Hadoop 4. Finally, the fourth type of data integra-
tion systems, Figure 2.(4), supports data distributed across networks as well as
heterogeneity of data sources. Such integration systems utilize special software
components to extract data from the data sources using native query language
and access mechanism. They can also transform data extracted from the sources
to data representation defined by the integration system. Data sources in the
integration system might also be autonomous. Such types of system are different
from the third type by how data is distributed and stored. While the fourth
type supports any storage management, including DFS, the third type of data
integration systems supports only DFS in a centralized way. Mostly the distri-
bution task is handled by the file system. For instance, data might be stored in
a multi-modal data management system or in Data Lake storage based only on
a distributed file system (DFS). In the third type of data integration system,
data is loaded from the original source to the centralized storage for further pro-
cessing. Federated query processing systems fall in the second and fourth type
of integration system when the data sources are autonomous.

Data integration systems also have to make sure that data that is current
(fresh) is accessed and integrated. Especially, for DFS-based Data Lakes, Fig-
ure 2.(2), and the centralized, Figure 2.(4), integration systems, updates of the
original data sources should be propagated to guarantee the freshness of data.
Furthermore, when accessing an original data source from the provider is re-
stricted, or management of data in a local replica is preferred, integration systems
Figure 2.(1) and (3), need to guarantee data freshness by propagating changes.

2.2 Data Integration in the era of Big Data

In the era of big data, a large amount of structured, semi-structured, and un-
structured data is being generated at a faster rate than ever before. Big data
systems that integrate different data sources need to handle such characteris-
tics of data efficiently and effectively. Generally, big data is defined as data
whose volume, acquisition speed, data representation, veracity, and potential
value overcome the capacity of traditional data management systems [76]. Big
data is characterized by the 5Vs model: Volume denotes that generation and
collection of data are produced at increasingly big scales. Velocity represents
that data is generated and collected rapidly. Variety indicates heterogeneity in
data types, formats, structuredness, and data generation scale. Veracity refers
to noise and quality issues in the data. Finally, Value denotes the benefit and
usefulness that can be obtained from processing and mining big data.

4 https://hadoop.apache.org/



Chapter 5 Federated Query Processing 75

There are two data access strategies for data integration: schema-on-write
and schema-on-read. In the schema-on-write strategy, data is cleansed, orga-
nized, and transformed according to a pre-defined schema before loading to the
repository. In schema-on-read strategy, raw data is loaded to the repository as-is
and schema is defined only when the data is needed for processing [26]. Data
warehouses provide a common schema and require data cleansing, aggregation,
and transformation in advance, hence, following the schema-on-write strategy.
To provide scalable and flexible data discovery, analysis, and reporting, Data
Lakes have been proposed. Unlike data warehouses, where data is loaded to the
repository after it is transformed to a target schema and data representation,
Data Lakes store data in its original format, i.e., the schema-on-read strategy.
Data Lakes provide a central repository for raw data that is made available to
the user immediately and defer any aggregation or transformation tasks to the
data analysis phase, thus addressing the problem of disconnected information si-
los, which is the result of non-integrated heterogeneous data sources in isolated
repositories with diverse schema and query languages. Such a central repository
may include different data management systems, such as distributed file systems,
relational database management systems, graph data management systems, as
well as triple stores for specialized data model and storage.

3 Federated Query Processing

A federated query processing system5, provides a unified access interface to a set
of autonomous, distributed, and heterogeneous data sources. While distributed
query processing systems have control over each dataset, federated query pro-
cessing engines have no control over datasets in the federation and data providers
can join or leave the federation at any time and modify their datasets indepen-
dently. Query processing in the context of data sources in a federation is more
difficult than in centralized systems because of the different parameters involved
that affect the performance of the query processing engine [113]. Data sources
in a federation might contain fragments of data about an entity, have differ-
ent processing capabilities, support different access patterns, access methods,
and operators. The role of a federated query engine is to transform a query ex-
pressed in terms of the global schema, i.e., the federated query, into an equivalent
query expressed in the schema of the data sources, i.e., local query. The local
query represents the actual execution plan of the federated query by the data
sources of the federation. The transformation of the federated query to a local
query needs to be both effective and efficient. Query transformations are effective
if the generated query is equivalent to the original one, i.e., both the original
and the transformed queries produce same results. On the other hand, query
transformations are efficient if the execution strategy of the transformed query
makes use of minimum computational resources and communication cost. Pro-
ducing an efficient execution strategy is difficult as many equivalent and correct

5 We use the terms federated query processing system, federated query engine, and
federated query processing system interchangeably.



76 Kemele M. Endris, Maria-Esther Vidal, and Damien Graux

Query Parsing

Query 
Optimization

Query Decomposition 
& Source Selection

Result Conciliation 

Query Execution

Catalog 
Manager

Query Answer

Data SourcesSource Descriptions

Fig. 3: Federated Query Processing Basic Components

transformations can be produced and each equivalent execution strategy leads to
different consumption of resources [336]. The main objective of federated query
processing is to transform a query posed on a federation of data sources into a
query composed of the union of subqueries over individual data sources of the
federation. Further, a query plan is generated in order to speed up the processing
of each individual subquery over the selected sources, as well as the gathering of
the results into the query answer. An important part of query processing in the
context of federated data sources is query optimization as many execution plans
are correct transformations of the same federated query. The one that optimizes
(minimizes) resource consumption should be retained. Query processing perfor-
mance can be measured by the total cost that will be used in query processing
and the response time of the query, i.e., time elapsed for executing the query.

As an RDF data model continues gaining popularity, publicly available RDF
datasets are growing in number and size. One of the challenges emerging from
this trend is how to efficiently and effectively execute queries over a set of au-
tonomous RDF datasets. Saleem et al. [378] study federated RDF query engines
with web access interfaces. Based on their survey results, the authors divide fed-
eration approaches into three main categories: Query Federation over SPARQL
endpoints, Query Federation over Linked Data (via URI lookups), and Query
Federation on top of Distributed Hash Tables. Moreover, Acosta et al. [5] classi-
fied federated RDF query processing engines based on the type of data sources
they support into three categories: Federation of SPARQL endpoints, Federation
of RDF Documents, and Federation of Triple Pattern Fragments.

Conceptually, federated query processing involves four main sub-problems
(components): (i) data source description, (ii) query decomposition and source
selection, (iii) query planning and optimization, and (iv) query execution. Feder-
ated query engines also include two additional sub-problems: query parsing and
result conciliation. Query parsing and result conciliation sub-problems deal with



Chapter 5 Federated Query Processing 77

syntactic issues of the given query and formatting the results returned from the
query execution, respectively. Below we provide an overview of the data source
description, query decomposition and source selection, query planning and op-
timization as well as query execution sub-problems.

3.1 Data Source Description

The data source description sub-problem deals with describing the data available
in data sources and managing catalogs about data sources that are participating
in the federation. Data source descriptions encode information about available
data sources in the federation, types of data in each data source, access method
of data sources, and privacy and access policies of these data sources [113]. The
specification of what data exist in data sources and how the terms used in data
sources are related to the global schema are specified by the schema mapping.
Schema mappings also represent privacy and access control restrictions as well
as statistics on the available data in each data source. Federated query engines
rely on the description of data sources in the federation to select relevant sources
that may contribute to answer a query. Data source descriptions are utilized by
source selection, query decomposition, and query optimization sub-problems.

A catalog of data source descriptions can be collected offline or during query
running-time. Based on the employed catalog of source descriptions, SPARQL
federation approaches can be divided into three categories [378]: pre-computed
catalog assisted, on-the-fly catalog assisted, and hybrid (uses both pre-computed
and on-the-fly) solutions. Pre-computed catalog-assisted federated SPARQL query
engines use three types of catalogs: service descriptions, VoID (Vocabulary of In-
terlinked Datasets) description, and list of predicates [333]. The first two catalogs
are computed and published by the data source providers that contains descrip-
tions about the set of vocabularies used, a list of classes and predicates, as well
as some statistics about the instances such as number of triples per predicate,
or class. Specifically in VoID descriptions, there is information about external
linksets that indicate the existence of owl:sameAs and other linking properties.
The third type of catalog, i.e., a list of predicates, is generated by contacting the
data source endpoints and issuing SPARQL queries and extracting predicates
from the other two types of catalog.

FedX [387] does not require a catalog of source descriptions computed be-
forehand but uses triple pattern-wise ASK queries sent to data sources at query
time. Triple pattern-wise ASK queries are SPARQL ASK queries which contain
only one triple pattern in the graph expression of the given query. Lusail [4], like
FedX, uses an on-the-fly catalog solution for source selection and decomposition.
Unlike FedX, Lusail takes an additional step to check if pairs of triple patterns
can be evaluated as one subquery over a specific endpoint; this knowledge is
exploited by Lusail during query decomposition and optimization. Posting too
many SPARQL ASK queries can be a burden for data sources that have lim-
ited compute resources, which may result in DoS. Pre-computed catalog of data
source descriptions can be used to reduce the number of requests sent to the data
sources. ANAPSID [6] is a federated query processing engine that employs a hy-



78 Kemele M. Endris, Maria-Esther Vidal, and Damien Graux

brid solution and collects a list of RDF predicates of the triple patterns that can
be answered by the data sources and sends ASK queries when required during
query time. Publicly available dataset metadata are utilized by some federated
query processing engines as catalogs of source descriptions. SPLENDID [160]
relies on instance-level metadata available as Vocabulary of Interlinked Datasets
(VoID) [10] for describing the sources in a federation. SPLENDID provides a
hybrid solution by combining VoID descriptions for data source selection along
with SPARQL ASK queries submitted to each dataset at run-time for verifi-
cation. Statistical information for each predicate and types in the dataset are
organized as inverted indices, which will be used for data source selection and
join order optimization. Similarly, Semagrow [74] implements a hybrid solution,
like SPLENDID, and triple pattern-wise source selection method which uses
VoID descriptions (if available) and SPARQL ASK queries.

MULDER [124] and Ontario [125] federated query engine employs source
description computed based on the concept of RDF molecules; a set of triples
that share the same subject values are called RDF Molecules. RDF Molecule
Templates (RDF-MTs) encode an abstract description of a set of RDF molecules
that share similar characteristics such as semantic type of entities. RDF Molecule
Template-based source descriptions leverage the semantics encoded in data sources.
It is composed of a semantic concept shared by RDF molecules, a set of mapping
rules, a list of properties that a molecule can have, and a list of intra- and inter-
connections between other RDF molecule templates. Such description models
provide a holistic view over the set of entities and their relationships within the
data sources in the federation. For instance, Figure 4 shows RDF-MT based
descriptions of the FedBench benchmark composed on 10 RDF data sources.

3.2 Query Decomposition and Source Selection

Selecting the relevant data sources for a given query is one of the sub-problems
in federated query processing. Given a federated query parsed with no syntactic
problems, the query is first checked if it is semantically correct with respect to
the global schema. This step eliminates an incorrect query that yields no results
early on. The query is then simplified by, for example, removing redundant pred-
icates. The task of source selection is to select the actual implementation of sub-
queries in the federation at specific data sources. The sources schema and global
schema are given by the data source descriptions as input to this sub-problem.
The query decomposition and source selection sub-problem decomposes the fed-
erated query into subqueries associated with data sources in the federation that
are selected for executing the subqueries. The number of data sources considered
for selection are bounded by the data source description given to the federated
query processing engine. Each sub-query may be associated to zero or more data
source, thus, if the query contains at least one sub-query without data source(s)
associated with it, then the global query can be rejected. Source selection task is
a critical part of query optimization. Failure to select correct data sources might
lead to incomplete answers as well as high response time and resource consump-
tion. The output of this component is a decomposed query into subqueries that



Chapter 5 Federated Query Processing 79

DBpedia

Drugbank

KEGG

Chebi Jamendo

Geonames

NYTimes

SWDF

LinkedMDB

Shared

Fig. 4: RDF-MT-based description of FedBench. The graph comprises 387
RDF-MTs and 6, 317 intra- and inter-dataset links. The dots in each circle rep-
resent RDF-MTs. A line between dots in the same circle shows intra-dataset
links, while a line between dots in different circles corresponds to inter-dataset
links. In numbers, there is only one RDF-MT in ChEBI, 234 in DBpedia, six in
Drugbank, one in Geonames, 11 in Jamendo, four in KEGG, 53 in LinkedMDB,
two in NYTimes, and 80 in SWDF dataset. Four of these RDF-MTs belong to
at least two FedBench datasets, modeled as separate circular dots.

are associated with the selected data sources in the federation. Identifying the
relevant sources of a query not only leads to a complete answer but also faster
execution time.

3.3 Query Planning and Optimization

The goal of query planning is to generate an execution plan that represent the
steps on how the query is executed and which algorithms (operators) are used.
The task of query plan generation produces query execution plans, e.g., a tree-
based plan where the leaf of the tree corresponds to the sub-queries to be exe-
cuted in selected data sources and the internal nodes corresponds to the physical
(algebraic) operators, such as join, union, project, and filter, that perform alge-
braic operations by the federated query processing engine. Many semantically
equivalent execution plans can be found by permuting the order of operators
and subqueries. However, the cost of executing different ordering of a query is
not always the same. In a federated setting, the number of intermediate results
as well as the communication costs impacts the performance of query execution.
Federated query processing engines should use an optimization techniques to
select an optimal execution plan that reduces execution time and resource us-
age, such as memory, communication, etc. Optimization of the query execution
plan starts from selecting only relevant sources, decomposition and finally mak-
ing decisions on the selection of appropriate implementation of join operations.
These optimization techniques include making decisions on selection of the join



80 Kemele M. Endris, Maria-Esther Vidal, and Damien Graux

methods, ordering, and adapting to the condition of the sources. The objective
of the planning and optimization sub-problem is to find an execution plan that
minimizes the cost of processing the given query, i.e., finding the “best” ordering
of operators in the query, which is close to optimal solution. Finding an optimal
solution is computationally intractable [209]. Assuming a simplified cost func-
tion, it is proven that the minimization of this cost function for a query with
many joins is NP-Complete. To select the ordering of operators, it is necessary to
estimate execution costs of alternative candidate orderings. There are two type
of query optimization in the literature: cost-based and heuristics-based query
optimization. In cost-based optimization techniques, estimating the cost of the
generated plans, i.e., candidate orderings, requires collecting statistics on each
of the data sources either before query executions, static optimization or during
query execution, dynamic optimization. In federated settings, where data sources
are autonomous, collecting such statistics might not always be possible. Cost-
based approaches are often not possible because the data source descriptions do
not have the needed statistics. Heuristic-based optimization techniques can be
used to estimate the execution cost using minimum information collected from
sources as well as the properties of the operators in the query, such as type of
predicates, operators, etc. The output of the query planning and optimization
is an optimized query, i.e., query execution plan, with operations (join, union)
between subqueries.

3.4 Query Execution

Query execution is performed by data sources that are involved in answering
sub-query(s) of the given query. Each sub-query executed in each data source is
then optimized using the local schema and index (if available) of the data source
and executed. The physical operator (and algorithms) to perform the relational
operators (join, union, filter) may be chosen. Five different join methods are used
in federated query engines: nested loop join, bound-join, hash join, symmetric
join, and multiple join [333]. In nested-loop join (NLJ) the inner sub-query is
executed for every binding of the intermediate results from the outer sub-query of
the join. The bindings that satisfy the join condition are then included in the join
results. Bound-join, like NLJ, executes inner sub-query for the set of bindings,
unlike NLJ which executes the inner sub-query for every single binding of the
intermediate results from the outer sub-query. This set of bindings can be sent as
a UNION or FILTER SPARQL operators can be used to send multiple bindings
to the inner sub-query. In the hash-join method, each sub-query (operands of the
join operation) is executed in parallel and the join is performed locally using a
single hash table at the query engine. The fourth type of join method, symmetric
(hash) join, is a non-blocking hash-based join that pipelines parallel execution
of the operands and generates output of the join operation as early as possible.
Several extended versions of this method are available, such as XJoin [434],
agjoin [6], and adjoin [6]. Finally, the multiple (hash) join method uses multiple
hash tables to join more than two sub-queries running at the same time.



Chapter 5 Federated Query Processing 81

4 Grand Challenges and Future Work

In this section, we analyze the grand challenges to be addressed in the definition
and implementation of federated query engines against distributed sources of big
data. These challenges can be summarized as follows:

– Definition of formal models able to describe not only the properties and
relationships among data sources, but also represent and explain causality
relations, bias, and trustworthiness.

– Adaptive query processing techniques able to adjust query processing sched-
ules according to the availability of the data, as well as to the validity and
trustworthiness of the published data.

– Machine learning models able to predict the cost of integrating different
sources, and the benefits that the fusion of new data sources adds to the
accuracy, validity, and trustworthiness of query processing.

– Hybrid approaches that combine computational methods with human knowl-
edge with the aim to enhance, certify, and explain the outcomes of the main
data-driven tasks, e.g., schema matching, and data curation and integration.

– Query processing able to interoperate during query execution. Furthermore,
data quality assessment and bias detection methods are required in order to
produce answers that ensure validity and trustworthiness.

– Methods capable of tracing data consumed from the selected sources, and ex-
plainable federated systems able to justify all the decisions made to produce
the answer of a query over a federation of data sources.

The diversity of the problems that remain open presents enormous opportuni-
ties both in research and development. Advancement in this area will contribute
not only more efficient tools but also solutions that users can trust and under-
stand. As a result, we expect a paradigm shift in the area of big data integration
and processing towards explainability and trustworthiness – issues that have
thus far prevented global adoption of data-driven tools.


