
Chapter 4
Creation of Knowledge Graphs

Anastasia Dimou

Department of Electronics and Information Systems
Ghent University, Belgium

Abstract. This chapter introduces how Knowledge Graphs are gener-
ated. The goal is to gain an overview of different approaches that were
proposed and find out more details about the current prevalent ones. Af-
ter reading this chapter, the reader should have an understanding of the
different solutions available to generate Knowledge Graphs and should
be able to choose the mapping language that best suits a certain use
case.

1 Introduction

The real power of the Semantic Web will be realized once a significant number of
software agents requiring information from different heterogeneous data sources
become available. However, human and machine agents still have limited ability
to interact with heterogeneous data as most data is not available in the form
of knowledge graphs, which are the fundamental cornerstone of the Semantic
Web. They have different structures (e.g., tabular, hierarchical), appear in het-
erogeneous formats (e.g., CSV, XML, JSON) and are accessed via heterogeneous
interfaces (e.g., database interfaces or Web APIs).

Therefore, different approaches were proposed to generate knowledge graphs
from existing data. In the beginning, custom implementations were proposed [66,
290] and they remain prevalent today [70, 177]; however, more generic approaches
emerged as well. Such approaches were originally focused on data with specific
formats, namely dedicated approaches for, e.g., relational databases [92], data
in Excel (e.g. [272]), or in XML format (e.g. [270]). However, data owners who
hold data in different formats need to learn and maintain several tools [110].

To deal with this, different approaches were proposed for integrating het-
erogeneous data sources while generating knowledge graphs. Those approaches
follow different directions, but detaching the rules definition from their execution
prevailed, because they render the rules interoperable between implementations,
whilst the systems that process those rules are use-case independent. To generate
knowledge graphs, on the one hand, dedicated mapping languages were proposed,
e.g., RML [110], and, on the other hand, existing languages for other tasks were
repurposed as mapping languages, e.g., SPARQL-Generate [276].

We focus on dedicated mapping languages. The most prevalent dedicated
mapping languages are extensions of R2RML [96], the W3C recommendation on

56 Anastasia Dimou

knowledge graph generation from relational databases. RML was the first lan-
guage proposed as an extension of R2RML, but there are more alternative ap-
proaches and extensions beyond the originally proposed language. For instance,
xR2RML [303], for generating knowledge graphs from heterogeneous databases,
and KR2RML [405]), for generating knowledge graphs from heterogeneous data.

In the remainder of this chapter, we introduce the Relational to RDF Map-
ping Language (R2RML) [96] and the RDF Mapping Language (RML) [110]
which was the first mapping language extending R2RML to support other het-
erogeneous formats. Then we discuss other mapping languages which extended
or complemented R2RML and RML, or their combination.

2 R2RML

The Relational to RDF Mapping Language (R2RML) [96] is the W3C recommen-
dation to express customized mapping rules from data in relational databases to
generate knowledge graphs represented using the Resource Description Frame-
work (RDF) [93]. R2RML considers any custom target semantic schema which
might be a combination of vocabularies. The R2RML vocabulary namespace is
http://www.w3.org/ns/r2rml# and the preferred prefix is r2rml.

In R2RML, RDF triples are generated from the original data in the relational
database based on one or more Triples Maps (rr:TriplesMap, listing 4.1, line 3).
Each Triples Map refers to a Logical Table (rr:LogicalTable, line 4), specified
by its table name (rr:tableName). A Logical Table (rr:LogicalTable) is either
a SQL base table or view, or an R2RML view. An R2RML view is a logical
table whose contents are the result of executing a SQL query against the input
database. The SQL query result is used to generate the RDF triples.

Table 1: Results of female pole vault for 2019 world championship
rank name nationality mark notes

1 Anzhelika Sidorova Authorized Neutral Athlete 4.95 WL,PB

2 Sandi Morris United States (USA) 4.90 SB

3 Katerina Stefanidi Greece 4.85 SB

4 Holly Bradshaw Great Britain 4.80

5 Alysha Newman Canada 4.80

6 Angelica Bengtsson Sweden 4.80 NR

1 @prefix rr: <http://www.w3.org/ns/r2rml#>.
2
3 <#FemalePoleVault> rr:logicalTable <#PoleVaultersDBtable> .
4 <#PoleVaultersDBtable> rr:tableName "femalePoleVaulters" .

Listing 4.1: A Triples Map refers to a Logical Table specified by its name

A Triples Map defines how an RDF triple is generated. It consists of three
parts: (i) one Logical Table (rr:LogicalTable, listing 4.1), (ii) one Subject Map

Chapter 4 Creation of Knowledge Graphs 57

(rr:SubjectMap, listing 4.2, line 2), and (iii) zero or more Predicate-Object Maps
(rr:PredicateObjectMap, listing 4.2, lines 3 and 4).

1 # Triples Map
2 <#FemalePoleVault> rr:subjectMap <#Person_SM> ;
3 rr:predicateObjectMap <#Mark_POM> ;
4 rr:predicateObjectMap <#Nationality_POM> .

Listing 4.2: A Triples Map consists of one Logical Table one Subject Map
and zero or more Predicate Object Maps

The Subject Map (rr:SubjectMap, listing 4.3, line 2) defines how unique
identifiers, using IRIs [117] or blank nodes, are generated. The RDF term gener-
ated from the Subject Map constitutes the subject of all RDF triples generated
from the Triples Map that the Subject Map is related to.

A Predicate-Object Map (rr:PredicateObjectMap, listing 4.3, lines 5 and 10)
consists of (i) one or more Predicate Maps (rr:PredicateMap, line 5), and
(ii) one or more Object Maps (rr:ObjectMap, line 6) or Referencing Object Maps
(rr:ReferencingObjectMap, line 11).

1 # Subject Map
2 <#Person_SM>. rr:template "http:://ex.com/person/{name}"
3
4 # Predicate Object Map with Object Map
5 <#Mark_POM> rr:predicate ex:score ;
6 rr:objectMap [rr:column "Mark" ;
7 rr:language "en"] .
8
9 # Predicate Object Map with Referencing Object Map

10 <#Nationality_POM> rr:predicateMap <#Country_PM> ;
11 rr:objectMap <#Country_ROM> ;

Listing 4.3: A Predicate Object Map consists of one or more Predicate Maps
and one or more Object Maps or Referencing Object Maps

A Predicate Map (rr:PredicateMap, listing 4.3, lines 5 and 10) is a Term
Map (rr:TermMap) defining how a triple’s predicate is generated. An Object Map
(rr:ObjectMap, line 6) or Referencing Object Map (rr:ReferencingObjectMap,
listing 4.4, line 11) defines how a triple’s object is generated.

A Referencing Object Map defines how the object is generated based on
the Subject Map of another Triples Map. If the Triples Maps refer to different
Logical Tables, a join between the Logical Tables is required. The join condition
(rr:joinCondition, listing 4.4, line 3) performs joins as joins are executed in
SQL. The join condition consists of a reference to a column name that exists in
the Logical Table of the Triples Map that contains the Referencing Object Map
(rr:child, line 4) and a reference to a column name that exists in the Logical
Table of the Referencing Object Map’s Parent Triples Map (rr:parent, line 5).

1 # Referencing Object Map
2 <#Country_ROM> rr:parentTriplesMap <#Country_TM> ;
3 rr:join [
4 rr:cild "nationality" ;
5 rr:parent "country_name"] .
6
7 <#Country_TM> rr:logicalTable [rr:tableName "country"];

58 Anastasia Dimou

8 rr:subjectMap rr:template "http://ex.com/country/{country_name}" .

Listing 4.4: A Referencing Object Map generates an object based on the
Subject Map of another Triples Map

A Term Map (rr:TermMap) defines how an RDF term (an IRI, a blank node,
or a literal) is generated and it can be constant-, column- or template-valued.

A constant-valued Term Map (rr:constant, listing 4.3, line 5) always gen-
erates the same RDF term which is by default an IRI.

A column-valued term map (rr:column, listing 4.3, line 6) generates a lit-
eral by default that is a column in a given Logical Table’s row. The language
(rr:language, line 7) and datatype (rr:datatype) may be optionally defined.

A template-valued Term Map (rr:template, listing 4.3, line 8) is a valid
string template containing referenced columns and generates an IRI by default.
If the default termtype is desired to be changed, the term type (rr:termType)
needs to be defined explicitly (rr:IRI, rr:Literal, rr:BlankNode).

3 RML

The RDF Mapping Language (RML) [109, 110] expresses customized mapping
rules from heterogeneous data structures, formats and serializations to RDF.
RML is a superset of R2RML, aiming to extend its applicability and broaden its
scope, adding support for heterogeneous data. RML keeps the mapping rules as
in R2RML but excludes its database-specific references from the core model. This
way, the input data that is limited to a certain database in R2RML (because
each R2RML processor may be associated to only one database), becomes a
broad set of one or more input data sources in RML.

RML provides a generic way of defining mapping rules referring to different
data structures, combined with case-specific extensions, but remains backwards
compatible with R2RML, as relational databases form such a specific case. RML
enables mapping rules defining how a knowledge graph is generated from a set of
sources that altogether describe a certain domain, can be defined in a combined
and uniform way. The mapping rules may be re-used across different sources
describing the same domain to incrementally form well-integrated datasets.

The RML vocabulary namespace is http://semweb.mmlab.be/ns/rml# and
the preferred prefix is rml.

In the remainder of this subsection, we will talk in more details about data
retrieval and transformations in RML, as well as other representations of RML.

3.1 Data Retrieval

Data can originally (i) reside on diverse locations, e.g., files or databases on the
local network, or published on the Web; (ii) be accessed using different inter-
faces, e.g., raw files, database connectivity for databases, or different interfaces
from the Web such as Web APIs; and (iii) have heterogeneous structures
and formats, e.g., tabular, such as databases or CSV files, hierarchical, such
as XML or JSON format, or semi-structured, such as HTML.

Chapter 4 Creation of Knowledge Graphs 59

In this section, we explain how RML performs the retrieval and extraction
steps required to obtain the data whose semantic representation is desired.

Logical Source RML’s Logical Source (rml:LogicalSource, listing 4.5) extends
R2RML’s Logical Table and determines the data source with the data to gen-
erate the knowledge graph. The R2RML Logical Table definition determines a
database table, using the Table Name (rr:tableName). In the case of RML,
a broader reference to any input source is required. Thus, the Logical Source
(rml:source) is introduced to specify the source with the original data.

For instance, if the data about countries were in an XML file, instead of a
Logical Table, we would have a Logical Source <#PoleVaultersXML> (listing 4.5,
line 3):

1 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
2
3 <#Countries> rml:logicalSource <#CountriesXML> ;
4 <#CountriesXML> rml:source <http://rml.io/data/lambda/countries.xml> .

Listing 4.5: A Triples Map refers to a Logical Source whose data is in XML
format

The countries data can then be in XML format as below:

1 <countries>
2 <country continent="Europe">
3 <country_abb>GR</country_abb>
4 <country_name country_language="en">Greece</country_name>
5 <country_name country_language="nl">Griekenland</country_name>
6 </country>
7 <country continent="Europe">
8 <country_abb>UK</country_abb>
9 <country_name country_language="en">United Kingdom</country_name>

10 <country_name country_language="nl">Verenigd Koninkrijk</country_name>
11 </country>
12 <country continent="America">
13 <country_abb>CA</country_abb>
14 <country_name country_language="en">Canada</country_name>
15 <country_name country_language="nl">Canada</country_name>
16 </country>
17 ...
18 </countries>

Listing 4.6: Country data in XML format

Reference Formulation RML deals with different data serialisations which use
different ways to refer to data fractions. Thus, a dedicated way of referring to
the data’s fractions is considered, while the mapping definitions that define how
the RDF terms and triples are generated remain generic. RML considers that
any reference to the Logical Source should be defined in a form relevant to the
input data, e.g. XPath for XML data or JSONPath for JSON data. To this end,
the Reference Formulation (rml:referenceFormulation) declaration is introduced
(listing 4.7, line 4), indicating the formulation (for instance, a standard, query
language or grammar) used to refer to its data.

1 @prefix rml: <http://semweb.mmlab.be/ns/rml#>.
2

60 Anastasia Dimou

3 <#Countries> rml:logicalSource <#CountriesXML> .
4 <#CountriesXML> rml:referenceFormulation ql:XPath .
5 <#CountriesXML> rml:iterator "/countries/country" .

Listing 4.7: A Logical Source specifies its Reference Formulation and iterator

Iterator While in R2RML it is already known that a per-row iteration occurs, as
RML remains generic, the iteration pattern, if any, cannot always be implicitly
assumed, but it needs to be determined. Thereafter, the iterator (rml:iterator)
is introduced (listing 4.7, line 5). The iterator determines the iteration pattern
over the data source and specifies the extract of the data during each iteration.
The iterator is not required to be explicitly mentioned in the case of tabular
data sources, as the default per-row iteration is implied.

Source Data can originally reside on diverse, distributed locations and be ac-
cessed using different access interfaces [111]. Data can reside locally, e.g., in files
or in a database at the local network, or can be published on the Web. Data
can be accessed using diverse interfaces. For instance, metadata may describe
how to access the data, such as dataset’s metadata descriptions in the case of
data catalogues, or dedicated access interfaces might be needed to retrieve data
from a repository, such as database connectivity for databases, or different Web
interfaces, such as Web APIs.

RML considers an original data source, but the way this input is retrieved
remains out of scope, in the same way it remains out of scope for R2RML
how the SQL connection is established. Corresponding vocabularies can de-
scribe how to access the data, for instance the dataset’s metadata (listing 4.8),
hypermedia-driven Web APIs or services, SPARQL services, and database con-
nectivity frameworks (listing 4.9) [111].

1 <#FemalePoleVault> rr:logicalTable <#PoleVaultersCSVtable> ;
2 <#PoleVaultersCSVtable> rml:source <#CSVW_source> .
3
4 <#CSVW_source> a csvw:Table;
5 csvw:url "femalePoleVaulters.csv" ;
6 csvw:dialect [a csvw:Dialect; csvw:delimiter ";"] .

Listing 4.8: A CSV file on the Web as RML Data Source

1 <#FemalePoleVault> rr:logicalTable <#PoleVaultersDBtable> ;
2 <#PoleVaultersDBtable> rml:source <#DB_source>;
3 rr:sqlVersion rr:SQL2008;
4 rr:tableName "femalePoleVaulters" .
5
6 <#DB_source> a d2rq:Database;
7 d2rq:jdbcDSN "CONNECTIONDSN";
8 d2rq:jdbcDriver "com.mysql.cj.jdbc.Driver";
9 d2rq:username "root";

10 d2rq:password "" .

Listing 4.9: A table as RML Data Source

Chapter 4 Creation of Knowledge Graphs 61

Logical Reference According to R2RML, a column-valued or template-valued
term map is defined as referring to a column name. In the case of RML, a more
generic notion is introduced, the logical reference. Its value must be a valid
reference to the data of the input dataset according to the specified reference
formulation. Thus, the reference’s value should be a valid expression according
to the Reference Formulation defined at the Logical Source.

1 # Predicate Object Map with Object Map
2 <#CountryName_POM> rr:predicate ex:name ;
3 rr:objectMap [
4 rml:reference "country_name" ;
5 rml:languageMap [rml:reference "@country_language"]] .

Listing 4.10: An Object Map in RML with a reference to data according to
the Reference Formulation and a language Map to define the language.

RDF Term Maps are instantiated with data fractions referred to using a
reference formulation relevant to the corresponding data format. Those fractions
are derived from data extracted at a certain iteration from a Logical Source. Such
a Logical Source is formed by data retrieved from a repository accessed as defined
by the corresponding dataset or service description vocabulary.

Language Map RML introduces a new Term Map for defining the language, the
Language Map (rml:LanguageMap, listing 4.10, line 5), which extends R2RML’s
language tag (rr:language). The Language Map allows not only constant values
for language but also references derived from the input data. rr:language is
considered then an abbreviation for the rml:languageMap, as rr:predicate is
for the rr:predicateMap.

3.2 Data Transformations: FnO

Mapping rules involve (re-)modeling the original data, describing how objects are
related by specifying correspondences between data in different schemas [126],
and deciding which vocabularies and ontologies to use. Data transformations, as
opposed to schema transformations that the mapping rules represent, are needed
to support any changes in the structure, representation or content of data [365],
for instance, performing string transformations or computations.

The Function Ontology (FnO) [101, 103] describes functions uniformly, un-
ambiguously, and independently of the technology that implements them. As
RML extends R2RML with respect to schema transformations, the combination
of RML with FnO extends R2RML with respect to data transformations.

A function (fno:Function) is an activity which has input parameters, out-
put, and implements certain algorithm(s) (listing 4.11, line 1). A parameter
(fno:Parameter) is a function’s input value (listing 4.11, line 4). An output
(fno:Output) is the function’s output value (listing 4.11, line 5). An execution
(fno:Execution) assigns values to the parameters of a function for a certain exe-
cution. An implementation (fno:Implementation) defines the internal workings
of one or more functions.

62 Anastasia Dimou

1 grel:string_split a fno:Function;
2 fno:name "split";
3 dcterms:description "split";
4 fno:expects (grel:string_s grel:string_sep);
5 fno:returns (grel:output_array).

Listing 4.11: A function described in FnO that splits a string

The Function Map (fnml:FunctionMap) is another Term Map, introduced
as an extension of RML, to facilitate the alignment of the two, RML and FnO.
A Function Map is generated by executing a function instead of using a constant
or a reference to the raw data values. Once the function is executed, its output
value is the term generated by this Function Map. The fnml:functionValue

property indicates which instance of a function needs to be executed to generate
an output and considering which values.

1 <#FemalePoleVault> rr:predicateObjectMap [
2 rr:predicate ex:record;
3 rr:objectMap [
4 fnml:functionValue [
5 rr:predicateObjectMap [
6 rr:predicate fno:executes ;
7 rr:objectMap [rr:constant grel:split]] ;
8 rr:predicateObjectMap [
9 rr:predicate grel:string_s ;

10 rr:objectMap [rml:reference "notes"]] ;
11 rr:predicateObjectMap [
12 rr:predicate grel:string_sep ;
13 rr:objectMap [rr:constant ","]]]].

Listing 4.12: A Function Map aligns FnO with RML

3.3 Other Representations: YARRRML

YARRRML [195, 102] is a human readable text-based representation for map-
ping rules. It is expressed in YAML [45], a widely used human-friendly data
serialization language. YARRRML can be used with both R2RML and RML.

A mapping (listing 4.13, line 1) contains all definitions that state how sub-
jects, predicates, and objects are generated. Each mapping definition is a key-
value pair. The key sources (line 3) defines the set of data sources that are used
to generate the entities. Each source is added to this collection via a key-value
pair. The value is a collection with three keys: (i) the key access defines the local
or remote location of the data source; (ii) the key reference formulation defines
the reference formulation used to access the data source; and (iii) the key itera-
tor (conditionally required) defines the path to the different records over which
to iterate. The key subjects (line 5) defines how the subjects are generated. The
key predicateobjects (line 6) defines how combinations of predicates and objects
are generated. Below the countries example (listing 4.6) is shown in YARRRML:

1 mappings:
2 country:
3 sources:
4 - ['countries.xml~xpath', '/countries/country']
5 s: http://ex.com/$(country_abb)
6 po:
7 - [ex:name, $(country_name)]

Chapter 4 Creation of Knowledge Graphs 63

8 - [ex:abbreviation, $(country_abb)]

Listing 4.13: A YARRRML set of mapping rules

4 [R2]RML extensions and alternatives

Other languages were proposed based on differentiation on (i) data retrieval and
(ii) data transformations. The table below (table 2) summarizes the mapping lan-
guages extensions, their prefixes and URIs. xR2RML [304] and KR2RML [405]
are the two most prominent solutions that showcase extensions and alternatives
respectively for data retrieval. On the one hand, xR2RML extends R2RML fol-
lowing the RML paradigm to support heterogeneous data from non-relational
databases. On the other hand, KR2RML extends R2RML relying on the Nested
Relational Model (NRM) [452] as an intermediate form to represent data orig-
inally stored in relational databases. KR2RML also provided an alternative for
data transformations, but FunUL is the most prominent alternative to FnO.

Table 2: [R2]RML extensions, their URIs and prefixes
language prefix URI

R2RML rr http://www.w3.org/ns/r2rml#

RML rml http://semweb.mmlab.be/ns/rml#

xR2RML xrr http://www.i3s.unice.fr/ns/xr2rml#

FnO+RML fnml http://semweb.mmlab.be/ns/fnml#

FnO fno https://w3id.org/function/ontology#

4.1 xR2RML

xR2RML [304] was proposed in 2014 in the intersection of R2RML and RML.
xR2RML extends R2RML beyond relational databases and RML to include non-
relational databases. xR2RML extends R2RML following the RML paradigm
but is specialized for non-relational databases and, in particular, NoSQL and
XML databases. NoSQL systems have heterogeneous data models (e.g., key-
value, document, extensible column, or graph store), as opposed to relational
databases. xR2RML assumes, as R2RML does, that a processor executing the
rules is connected to a certain database. How the connection or authentication
is established against the database is out of the language’s scope, as in R2RML.

The xR2RML vocabulary preferred prefix is xrr and the namespace is the
following: http://www.i3s.unice.fr/ns/xr2rml#.

Data Source Similarly to RML, an xR2RML Triples Map refers to a Logi-
cal Source (xrr:logicalSource, listing 4.14, line 3), but similarly to R2RML,
this Logical Source can be either an xR2RML base table (xrr:sourceName, for

64 Anastasia Dimou

databases where tables exist) or an xR2RML view representing the results of
executing a query against the input database (xrr:query, line 4).

1 @prefix xrr: <http://www.i3s.unice.fr/ns/xr2rml#> .
2
3 <#CountriesXML> xrr:logicalSource [
4 xrr:query """for $i in ///countries/country return $i; """;
5 rml:iterator "//countries/country";];
6 <#CountryName_POM> rr:predicate ex:name ;
7 rr:objectMap [xrr:reference "country_name"] .

Listing 4.14: xR2RML logical source over an XML database supporting
XQuery

Iterator xR2RML originally introduced the xrr:iterator, according to the
rml:iterator, to iterate over the results. In a later version, xR2RML converged
using the rml:iterator (listing 4.14, line 5).

Format or Reference Formulation In contrast to RML that considers a formu-
lation (rml:referenceFormulation) to refer to its input data, xR2RML origi-
nally specified explicitly the format of data retrieved from the database using the
property xrr:format (listing 4.15, line 2). For instance, RML considers XPath
or XQuery or any other formulation to refer to data in XML format, xR2RML
would refer to the format, e.g. xrr:XML. While RML allows for other kinds of
query languages to be introduced, xR2RML decides exactly which query lan-
guage to use. In an effort to converge with RML, xR2RML considers optionally
a reference formulation.

1 <#FemalePoleVault> xrr:logicalSource <#PoleVaultersCSVtable> ;
2 <#PoleVaultersCSVtable> xrr:format xrr:Row .

Listing 4.15: A CSV file on the Web as xR2RML Logical Source

Reference Similar to RML, xR2RML uses a reference (xrr:reference) to refer
to the data elements (listing 4.14, line 7). xR2RML extends RML’s reference
to refer to data elements in data with mixed formats. xR2RML considers cases
where different formats are nested; for instance, a JSON extract is embedded in
a cell of a tabular structure. A path with mixed syntax consists of the concate-
nation of several path expressions separated by the slash ‘/’ character.

Collections and Containers Several RDF terms can be generated by a Term
Map during an iteration if multiple values are returned. This can normally gen-
erate several triples, but it can also generate hierarchical values in the form of
RDF collections or containers. To achieve the latter, xR2RML extends R2RML
by introducing corresponding datatypes to support the generation of contain-
ers. xR2RML introduces new term types (rr:termType): xrr:RdfList for an
rdf:List, xrr:RdfBag for rdf:Bag, xrr:RdfSeq for rdf:Seq and xrr:RdfAlt

for rdf:Alt. All RDF terms produced by the Object Map during one triples
map iteration step are then grouped as members of one term. To achieve this,
two more constructs are introduced: Nested Term Maps and Push Downs.

Chapter 4 Creation of Knowledge Graphs 65

1 <#Countries> rr:predicateObjectMap [
2 rr:predicate ex:name;
3 rr:objectMap [
4 xrr:reference "country_name";
5 rr:termType xrr:RdfList;
6 xrr:pushDown [xrr:reference "@continent"; xrr:as "continent"];
7 xrr:nestedTermMap [
8 rr:template "{continent}: {country_name}" ;
9 rr:termType rr:Literal ;

10 rr:dataType xsd:string]].

Listing 4.16: An xrr:RdfList in xR2RML

Nested Term Map A Nested Term Map (xrr:NestedTermMap, listing 4.16, line 7)
accepts the same properties as a Term Map and can be used to specify a term
type, a language tag or a data type for the members of the generated RDF
collection or container.

Push Down Within an iteration, it may be needed to access data elements higher
in the hierarchical documents in the context of hierarchical data formats, such
as XML or JSON. To deal with this, xR2RML introduces the xrr:pushDown

property (listing 4.16, line 6).

4.2 KR2RML

KR2RML [405] extends R2RML in a different way than xR2RML. KR2RML
relies on the Nested Relational Model (NRM) as an intermediate form to repre-
sent data. The data is mapped into tables by translating it into tables and rows
where a column in a table can be either a scalar value or a nested table. Besides
the data retrieval part, KR2RML extends R2RML with data transformations
using User Defined Functions (UDFs) written in Python.

Data Source Mapping tabular data (e.g., CSV) into the Nested Relational Model
is straightforward. The model has a one-to-one mapping of tables, rows, and
columns, unless a transformation like splitting on a column occurs, which will
create a new column that contains a nested table.

Mapping hierarchical data (e.g., JSON, XML) into the Nested Relational
Model requires a translation algorithm for each data format next to the mapping
language. Such an algorithm is considered for data in XML and JSON format. If
the data is in JSON, an object maps to a single row table in NRM with a column
for each field. Each column is populated with the value of the appropriate field.
Fields with scalar values do not need translation, but fields with array values
are translated to their own nested tables: if the array contains scalar or object
values, each array element becomes a row in the nested table. If the elements
are scalar values like strings as in the tags field, a default column name “values”
is provided. If a JSON document contains a JSON array at the top level, each
element is treated like a row in a database table. If the data is in XML format,
its elements are treated like JSON objects, and its attributes and repeated child
elements as single-row nested table where each attribute is a column.

66 Anastasia Dimou

References The column-valued term map is not limited to SQL identifiers as it
occurs in R2RML to support mapping nested columns in the NRM. A JSON
array is used to capture the column names that make up the path to a nested
column from the document root. The template-valued term map is also extended
to include columns that do not exist in the original input but are the result of
the transformations applied by the processor.

Joins Joins are not supported because they are considered to be impractical and
require extensive planning and external support.

Execution Planning A tag (km-dev:hasWorksheetHistory) is introduced to
capture the cleaning, transformation and modeling steps.

Data Transformations The Nested Transformation Model can also be used to
embed transformation functions. A transformation function can create a new set
of nested tables instead of transforming the data values.

4.3 FunUL

FunUL [231] is an alternative to FnO for data transformations. FunUL allows
the definition of functions as part of the mapping language. In FunUL, functions
have a name and a body. The name needs to be unique. The body defines the
function using a standardized programming language. It has a return statement
and a call refers to a function with an optional set of parameters.

The FunUL vocabulary namespace is http://kdeg.scss.tcd.ie/ns/rrf#

and the preferred prefix is rrf.
The class rrf:Function defines a function (listing 4.17, line 3). A function

definition has two properties defining the name (rrf:functionName, line 4), and
the function body (rrf:functionBody, line 5).

A function can be called using the property rrf:functionCall (listing 4.17,
line 13). This property refers to a rrf:Function with the property rr:function

(line 14). Parameters are defined using rrf:parameterBindings (line 15).

1 @prefix rrf: <http://kdeg.scss.tcd.ie/ns/rrf#> .
2
3 <#SplitTransformation> a rrf:Function ;
4 rrf:functionName "splitTransformation" ;
5 rrf:functionBody
6 """function split(value, separator) {
7 str = value.split(separator).trim();
8 return str; ""; } """ ; .
9

10 <#FemalePoleVault> rr:predicateObjectMap [
11 rr:predicate ex:record;
12 rr:objectMap [
13 rrf:functionCall [
14 rrf:function <#SplitTransformation> ;
15 rrf:parameterBindings (
16 [rml:reference "notes"]
17 [rml:reference ","]);];

Listing 4.17: A Function Map aligns FnO with RML

Chapter 4 Creation of Knowledge Graphs 67

5 Conclusions

A lack of in-depth understanding of the complexity of generating knowledge
graphs and the many degrees of freedom in modeling and representing knowledge
prevents human and software agents from profiting of the Semantic Web poten-
tial. This chapter identified the different approaches that were proposed in recent
years for generating knowledge graphs from heterogeneous data sources. Then,
the chapter focused on approaches that distinguish mapping rules definition
from their execution. Two types of mapping languages prevailed, dedicated map-
ping languages and repurposed mapping languages. The chapter further focused
on dedicated mapping languages because they follow the W3C-recommended
R2RML.

This chapter presents the author’s view on knowledge graph generation. It
serves as an introductory chapter to knowledge graphs, which are considered in
greater detail in the following chapters. The next two chapters will explain how
to perform federated querying and reasoning over knowledge graphs.

68 Anastasia Dimou

T
a
b

le
3:

M
ap

p
in

g
L

a
n

g
u

a
g
es

co
m

p
a
riso

n
w

ith
resp

ect
to

d
a
ta

retrieval

R
2
R

M
L

R
M

L
x
R

2
R

M
L

K
R

2
R

M
L

e
x
te

n
d
s

–
R

2
R

M
L

R
2
R

M
L

&
R

M
L

R
2
R

M
L

d
a
ta

so
u
rc

e
rr:L

o
g
ica

lT
a
b
le

rm
l:L

o
g
ica

lS
o
u
rce

x
rr:L

o
g
ica

lS
o
u
rce

rr:L
o
g
ica

lT
a
b
le

d
a
ta

re
fe

re
n
c
e
s

–
referen

ce
fo

rm
u
la

tio
n

x
rr:fo

rm
a
t

–

re
fe

re
n
c
e

rr:co
lu

m
n

rr:tem
p
la

te
rm

l:referen
ce

rr:tem
p
la

te
x
rr:referen

ce
rr:tem

p
la

te
rr:co

lu
m

n
rr:tem

p
la

te

re
fe

re
n
c
e

fo
rm

u
la

tio
n

S
Q

L
S
Q

L
/
X

P
a
th

/
J
S
O

N
P

a
th

a
cc.

referen
ce

fo
rm

u
la

tio
n

S
Q

L
/
X

P
a
th

/
J
S
O

N
P

a
th

a
cc.

x
rr:fo

rm
a
t

S
Q

L
/
X

P
a
th

/
J
S
O

N
P

a
th

jo
in

rr:jo
in

rr:jo
in

(ex
ten

d
ed

)
rr:jo

in
(ex

ten
d
ed

)
n
o
t

su
p
p

o
rted

d
e
c
la

ra
tiv

e
ite

ra
to

r
n
o

y
es

y
es

n
o

ite
ra

to
r

–
rm

l:itera
to

r
x
rr:itera

to
r

–

q
u
e
ry

rr:sq
lQ

u
ery

rm
l:q

u
ery

x
rr:q

u
ery

rr:sq
lQ

u
ery

lists
–

–
x
rr:R

d
fL

ist
–

