
Scalable Distributed Genetic Algorithm Using
Apache Spark (S-GA)

Fahad Maqbool1(&), Saad Razzaq1, Jens Lehmann2,3,
and Hajira Jabeen2

1 University of Sargodha, Sargodha, Pakistan
{fahad.maqbool,saad.razzaq}@uos.edu.pk

2 Bonn University, Bonn, Germany
{lehmann,jabeen}@cs.uni-bonn.de
3 Fraunhofer IAIS, Sankt Augustin, Germany

Abstract. In this era of big data with facilities for advanced real-time data
acquisition, the solutions to large-scale optimization problems are strongly
desired. Genetic Algorithms are efficient optimization algorithms that have been
successfully applied to solve a multitude of complex problems. The growing
need for large-scale optimization, and inherent parallel evolutionary nature of
the algorithms calls for new solutions exploiting existing parallel, in-memory,
distributed computing frameworks like Apache Spark. In this paper, we present
an algorithm for Scalable Genetic Algorithms using Apache Spark (S-GA). S-
GA makes liberal use of rich APIs offered by Spark. We have tested S-GA on
several numerical benchmark problems for large-scale continuous optimization
containing up to 3000 dimensions, 3000 population size, and one billion gen-
erations. S-GA presents a variant of island model and minimizes the material-
ization and shuffles in RDDs for minimal and efficient network communication.
At the same time it maintains the population diversity by broadcasting the best
solutions across partitions after specified Migration Interval. We have tested and
compared S-GA with the canonical Sequential Genetic Algorithm (SeqGA). S-
GA has been found to be more scalable and it can scale up to large dimensional
optimization problems while yielding comparable results.

Keywords: Apache Spark � Parallel genetic algorithms �
Function optimization � Hadoop Map Reduce

1 Introduction

Owing to inherently decentralized nature of Genetic Algorithms (GA), a multitude of
variants of Parallel GA (PGA) have been introduced in the literature [1, 2]. However,
their application has remain limited to moderately sized optimization problems and the
research focused mostly on speeding up the performance of otherwise time-consuming
and inherently complex applications e.g. assignment and scheduling [11–13], or pre-
diction [8], tasks. To deal with large-scale optimization problems multi-core systems
and standalone clusters architectures have been proposed by Zheng et al. [6]. They
have used distributed storage file system or distributed processing framework like
Apache Hadoop, to achieve scalability in PGA [3–6]. Hadoop Map Reduce [7], is a

© Springer Nature Switzerland AG 2019
D.-S. Huang et al. (Eds.): ICIC 2019, LNCS 11643, pp. 424–435, 2019.
https://doi.org/10.1007/978-3-030-26763-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26763-6_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26763-6_41&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26763-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-26763-6_41

reliable, scalable and fault tolerant framework for large scale computing. Hadoop
requires writing data to HDFS after each iteration to achieve its resilience. In case of
CPU bound iterative processing, e.g. in case of Genetic Algorithms, this I/O overhead
is undesirable and substantially dominates the processing time. PGA has been explored
for numerous interesting applications like software fault prediction [8], test suite
generation [9], sensor placement [10], assignment and scheduling [11–13], dynamic
optimization [23], adapting offspring population size and number of islands [24].

Researchers have made significant efforts to explore the intrinsically parallel nature
of genetic algorithms using island model [16], and other PGA models [18]. A lot of
efforts have also been made by implementing and testing these models on Hadoop
framework [8, 17, 18, 25], by using map reduce strategy to improve scalability. PGAs
have been implemented using distributed frameworks and the effectiveness is evaluated
in terms of execution time, computation effort, solution quality in comparison with
Sequential Genetic Algorithm (SeqGA). However, the above mentioned efforts have
been tested on simple problems which have been solved using limited population size
and small number of generations overlooking the scalability that can be achieved by
using these frameworks to solve large-scale optimization problems. Apache Spark [14]
is an open source distributed cluster computing framework that has gained popularity in
recent years. It has been shown to be faster than Hadoop for large scale optimization
problems. it especially works better for iterative processing [14]. Contrary to Hadoop,
Spark keeps data in memory and uses lineage graphs to achieve resilience and fault
tolerance. This makes computing faster and eliminates the I/O overhead of read/write to
the Hadoop distributed file system (HDFS) incurred in case of map-reduce. Spark
provides APIs for generic processing in addition to specialized libraries for SQL like
operations [29], stream processing using concepts of mini-batches [26], iterative
machine learning algorithms [30], and a Graph processing library [15]. Spark’s efficient
data processing has proven to be 100 times faster for in-memory operations and 10
times faster for disk operations when compared to Hadoop MapReduce [25].

In this paper, we propose a Scalable GA (S-GA) for large-scale optimization
problems using Apache Spark. S-GA aims to reduce the communication overhead of
Apache Spark by optimal resource utilization for large scale optimization tasks. This is
contrary to the traditional island model [16], of PGA, where communication among
different subpopulation islands is directly proportional to the population and solution
size. In S-GA, the communication is independent of the population size and is limited
by the Migration Rate and Migration Interval. Hence, reducing a significant amount of
data transfer between parallel computations making it scalable and applicable to large
scale problems. We have compared S-GA with SeqGA for continuous numerical
optimization problems. The experiments have been performed on five different large
scale benchmark problems. The results of S-GA have been compared with GA and
found to be more efficient.

The paper is structured as follows: In Sect. 2, related work is discussed. SeqGA and
proposed S-GA is explained in Sects. 3 and 4 respectively. Experiments and evalua-
tions are discussed in Sect. 5. Finally, we discuss the Conclusions and future work in
Sect. 6.

Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA) 425

2 Related Work

Generally, there are three main models to parallelize GA i.e. global single-population
master-slave (global model), single-population fine-grained (grid model), multiple-
population coarse-grained (island model) [1]. Mostly, PGA divides a population into
multiple sub-populations. Each population independently searches for an optimal
solution using stochastic search operators like crossover and mutation. The Global
Model works like SeqGA with one population. The master is responsible for handling
the population by applying GA operators while slave manages the fitness evaluation of
individuals. In Grid Model, GA operators are applied within each sub-population and
each individual is assigned to only one sub-population. This helps in improving the
diversity. However, this model suffers from the problem of getting stuck in a local
optima, and it has high communication overhead due to frequent communication
between the sub-populations. IslandModel, [16] uses a large population divided among
different sub-populations called islands. GA operates on these islands independently
with the ability to exchange/migrate some of the individuals. This helps in increasing the
diversity of chromosome and avoid to get stuck in a local optima. SeqGA uses single
large population pool and apply stochastic operators on them. Details about SeqGA, is
given in Sect. 3.2. Whitley et al. [16], expected that Island model would outperform
SeqGA, because of the diversity of chromosomes and migration of individuals among
several islands. However, results revealed that Island model may perform better only if
migration among sub-populations is handled carefully.

A comparison of Hadoop Map Reduce based implementation of three main PGA
models, global single-population master-slave GAs (global model), single-population
fine-grained (grid model), multiple-population coarse-grained (island model) is dis-
cussed by Ferrucci et al. [8]. They observed that overhead of Hadoop distributed file
system (HDFS) make Global and Grid models less efficient as compared to Island
model for parallelizing GA for because of HDFS access, communication and execution
time. Island model performs less HDFS operations, resulting in optimized resource
utilization and efficient execution time. However, they reported experimental results of
Global, Grid, and Island models on population size of 200 only, with 300 generations
on smaller problems with a limited number of dimensions (only up to 18). Their results
concluded that distributed frameworks provide efficient support for data Distribution,
parallel processing, and memory management but they incur significant overhead of
communication delays.

Verma et al. [17], used Hadoop MapReduce framework to make GA scalable. Their
experiments were performed on OneMax problem and they addressed the scalability and
convergence as decreasing time per iteration, by increasing the number of resources
while keeping the problem size fixed. Keco and Subasi [18] discussed PGA using
Hadoop MapReduce. Their focus was to improve final solution quality and cloud
resource utilization. They obtained improved performance and fast convergence but
there were no improvements in the solution quality due to lack of communication among
the subpopulations. Edgar et al. [19], proposed a diversity based parent selection
mechanism for speeding up the multi-objective optimization using Evolutionary
Algorithm. This novel parent selection mechanism helped to find the Pareto front faster

426 F. Maqbool et al.

than the classical approaches. Osuna et al. [19], focused on individuals having high
diversity located in poor explored areas of the search space. Gao et al. [20], contributed
to maximizing the diversity of population in GA, by favoring the solutions whose fitness
value is better than a given threshold. They worked on OneMax and Leading One’s [27],
problems. The results revealed that algorithm efficiently maximized the diversity of a
population. They have presented a theoretical framework and haven’t addressed the
contribution of diversity in large-scale optimization problems.

PGA using Apache Spark framework [9], was proposed for the pairwise test suite
generation. Parallel operations were used for fitness evaluation and genetic operations.
They did not address the large scale data problems and only focused on test suite size
generation. Results were compared with SeqGA on synthetic and real-world datasets [9].

Both, GA and PGAs are widely used in several applications. Junior et al. [21],
applied parallel biased random-key GA with multiple populations on irregular strip
packing problem. In this problem, items of variable length and fixed width need to be
placed in a container. For an efficient layout scheme, they used collision-free region as
a partition method along with a meta-heuristic and a placement algorithm. Gronwald
et al. [22], determined location and amount of pollutant source in air by using Back-
ward Parallel Genetic Algorithm (BPGA). A concentration profile was compiled by
considering the readings from different points in an area. BPGA utilized multiple
guesses in a generation, and the best one was determined by a fitness function. This
best guess was used in the reproduction of next generation.

Previously proposed parallel implementations of GA majorly differ in structuring
the population and subpopulations named as the topology. The topology of PGA
determines the sub-population model and the sharing of solutions (i.e. sending and
receiving solutions from each other) among these subpopulations. These models, when
executed using distributed frameworks like Apache Spark, suffer from substantial
communication and network overhead. On one hand there is substantial parallelism
intrinsic in Genetic Algorithms, and on the other hand, the desired communication
hinders the ideal speed-up that could be achieved by using parallel/distributed tech-
niques. There exists a tradeoff between sub-population communication and solution
quality (due to population stagnation, getting stuck in the local optima and the lack of
diversity).

In conclusion, there is a strong need to develop fundamental new approaches for
parallel and distributed GA, while keeping in view the I/O, network, and communi-
cation overhead present in the existing distributed large scale computing frameworks.
In order to exploit the existing frameworks, the implementation must make optimal
resource utilization to gain the ideal speedup.

3 Background

3.1 Apache Spark

Apache Spark [28] was introduced by RAD Lab at the University of California in 2009
in order to overcome the limitations of Hadoop MapReduce. It has been designed for
faster in-memory computation for interactive queries and iterative algorithms while

Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA) 427

achieving efficient fault recovery and compliance with the Hadoop stack. At its core,
Spark is a “computational engine” that is responsible for scheduling, distributing, and
monitoring applications consisting of many computational tasks across many worker
machines, or a computing cluster. Apache Spark provides data distribution using
resilient distributed datasets (RDDs), which are Spark’s main programming abstraction.
RDDs represent a collection of items distributed across many compute nodes that can
be manipulated in parallel. RDD supports two types of operations: (i) Transformations,
(ii) Actions. Transformations are lazy operations that create a new RDD from existing
data in RDD. Lazy evaluation means that transformations are not executed, and an
execution graph is created instead, until an action is called. The actions materialize the
lazy evaluations and perform operations (e.g. aggregation) that transfer data from
worker nodes to the master node. In order to efficiently work with RDDs it is important
to be aware of the internal working details of RDDs, use of narrow transformations and
dependencies, reducing the number of actions etc. in order to achieve better speed up
with the parallel computing.

3.2 Sequential Genetic Algorithm (SeqGA)

SeqGA [11–13, 16, 18, 20], also known as Canonical GA is a stochastic search method
that is used to find the optimal solution for a given optimization problem using the
Darwinian’s principal of evolution “Survival of the Fittest”. It creates a single pool of
possible solutions population (panmixia) and applies stochastic operators (i.e. Selec-
tion, Crossover, Mutation, and Survival Selection) to create a new evolved population.
This process of new population evolution continues until the population has converged
to an optimal solution, or desired time/effort has elapsed. For large scale, or complex
problems, SeqGA may require more computational effort like more memory and long
execution time (for large population size and more generations).

Algorithm 1 explains the working of SeqGA. (Line 3), Select Parents specifies the
individual selection mechanism for reproduction or recombination. Crossover (Line 4)
helps to explore the search space by generating new solutions after recombination,
while Mutation (Line 5) exploits the solutions for improvement by random perturbation
of the selected solution. The Survival Selection scheme decides the number of indi-
viduals to be selected from parents and offspring’s for the next generation.

Algorithm 1. Sequential Genetic Algorithm
1.P ← Generate Initial Population
2.While Stopping Criteria not met do

3. P‘← Select Parents (P)

4. P‘ ← Crossover (P‘)
5. P‘ ← Mutate (P‘)
6. P‘ ← Survival –Selection (P U P‘)
7. P ← P‘
end while

428 F. Maqbool et al.

4 Scalable Distributed Genetic Algorithm Using Apache
Spark (S-GA)

S-GA creates an initial random population of solutions and distributes them on different
partitions as an RDD. The GA operators and fitness evaluations are performed within
each partition, independent of the other partitions. We have used roulette wheel
selection operator, uniform crossover, interchange mutation operation, and weak parent
survival selection, for creation of new offspring’s for the next generation.

In S-GA each partition (corresponding to an island in island model) replaces its
weakest solution by the fittest solutions broadcasted by other partitions. Migration
Size (Ms) specifies the number of solutions to be broadcasted to other partitions during
each migration step. S-GA significantly reduces the communication overhead by
minimizing the actions on RDD.

The pseudo code of S-GA is elaborated in Algorithm 2. The population is randomly
initialized at line (1) then distributed among m partitions at line (2). Solutions are
evolved using stochastic operators at line (6–12). It is worth mentioning here that we
have used operations that calculate and sort the fitness within each partition
(MapPartitionsWithIndex), therefore reducing the communication overhead and
achieving efficient performance. At line (14), SGA broadcasts evolved best solutions
(s) to other partitions and the weak solutions from the partitions are replaced with the
new broadcasted solutions at line (6). Migration Interval (Mi) defines the number of
generations after which S-GA broadcasts the fittest individual (s) of each partition to
other partitions. This helps achieving diversity in each subpopulation while searching
for the better solutions. The size of the broadcast and Migration Interval contribute to
the network communication delay, and directly affect the performance and conver-
gence. We have experimented with several values in our evaluations. Finally the above
steps are iterated until the stopping criteria is met. Figure 1 explains the idea of
Migration, Migration Size and Migration Interval with an example.

Fig. 1. Evolution process of S-GA

Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA) 429

Let’s assume value of Mi = 2, Ms = 1, and fitness function as sphere (i.e.,
f xið Þ ¼ Pn

i¼1 x
2
i . Initial RDD is created using a population of random solutions. These

initial solutions are then evolved using crossover and mutation operators. After every
2nd generation (as Mi = 2), best solution (as Ms = 1) from each partition is migrated to
other partitions. As the solution migrates, each partition at the start of very next
generation picks all the migrated solutions and replaces them with its weakest solutions
at each partition.

Algorithm 2.
N: Population Size
P: Population
Pi: Sub-Population at partition i
D: Dimensions
G: Generations
m: Number of Partitions
Mi: Migration Interval / gap
f : Fitness Function
Ms: Migration Size
1: Randomly initialise population of size P
2: Distribute P among m partitions
3: G = 0+
4: while stopping criteria not met do
5: at each partition i
6: for k: 1 to Mi do
7: Pi'' Select Parents (Pi')
8: Pi'' Crossover (Pi')
9: Pi'' Mutate (Pi')
10 Calculate Fitness (Pi’’)
11: Pi' Survival_ Selection (Pi' U Pi'')
12: end for
13: BroadcastSolutions
13: End at each partition i
14. Pi' =(Pi - (weak (m* Ms) solutions)) BroadcastSolutions
15: G = G + Mi

16: end while

430 F. Maqbool et al.

5 Experiments

5.1 Experimental Setup

The experiments are performed on a three node cluster: DELL PowerEdge R815, 2x
AMD Opteron 6376 (64 Cores), 256 GB .RAM, 3 TB SATA RAID-5 with spark-2.1.0
and Scala 2.11.8. Both S-GA and SeqGA used Crossover scheme: Uniform, Mutation:
Interchange, Replacement Scheme: Weak parent, Selection Scheme: Roulette Wheel,
Crossover Probability: 0.5, Mutation Probability: 0.05, P = D, and Function: Griewank
as configuration parameters. While S-GA also used m: 24 and Ms: 2 as configuration
parameters.

5.2 Evaluation Matrics

Speed Up: It is the ratio of sequential execution time to the parallel execution time. It
reflects how much parallel algorithm is faster than a sequential algorithm. Table 1
reflects speed up for all the cases where SeqGA and S-GA converge to VTR (Value To
Reach). VTR defines the threshold for convergence. We have used 1

Number of Dimensions as
VTR in experimentations.

In Table 1, we with different values of Migration Interval and Migration Size. it can
be seen that for large Migration Interval and Migration Size, a high speedup was
achieved.

Execution Time: The execution time of SeqGA and S-GA was measured using
system clock time. This time was recorded for a maximum of 1 billion generations.
Table 2 shows average execution time over 5 runs for each configuration of S-GA. We
can observe that execution time reduces significantly when we increase Mi from 50000
to 100000, however fitness error also decreases significantly. This difference in time
reduces with an increase in the number of partitions. Migration overhead defines the
total number of migrated individual (s) by all partitions after Mi. Increase in m and Mi

results in increased network overhead (m* Mi) and hence execution time. But on the
other hand this also helps S-GA to converge in a lesser number of generations. Table 2
lists the execution time of Sphere, Ackley, Griewank, Rastrigin, Zakharov, and Sum-
of-Different-Power-functions for optimization upto 3000 dimensions (D). For sim-
plicity population size (N) has been assumed to be equivalent to the number of
dimensions. G represents the number of generations that have been consumed using
specified configurations. VTR as mentioned earlier, is reciprocal to D. Hence VTR
would be lesser for 3000 dimensions compared to 2000 and 1000 dimensions. Bold
values in Table 2 represents the fitness error that has decreased beyond the specified
threshold i.e. VTR.

Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA) 431

Table 1. Experimental results of S-GA and SeqGA.

D SeqGA S-GA Speed up
G Time Error Mi m Ms G Time Error

1000 748 2476999 2.45e-4 25000 18 1 106850000 712 8.25e-4 –

2 39050000 352 9.28e-4 –

3 27275000 327 1.4e-4 –

24 1 46050000 356 6.68e-4 –

2 22675000 263 8.08e-4 –

3 19925000 311 9.55e-4 –

30 1 37500000 328 2.87e-4 –

2 15750000 228 2.33e-4 1.08
3 13150000 269 7.01e-4 –

50000 18 1 194500000 650 2.79e-4 –

2 86500000 393 7.99e-4 –

3 54850000 317 4.15e-4 –

24 1 92800000 565 9.37e-5 –

2 44250000 262 2.52e-4 –

3 38750000 311 3.69e-4 –

30 1 81850000 344 3.42e-4 –

2 33550000 244 2.01e-5 1.01
3 30350000 309 3.24e-4 –

2000 989 1064 2.03e-4 25000 18 1 242650000 3479 1.94e-4 –

2 95400000 1845 4.17e-4 –

3 62225000 1472 1.67e-4 –

24 1 127075000 2112 2.65e-4 –

2 61875000 1466 3.22e-4 –

3 36650000 1061 3.51e-4 1.002
30 1 95950000 1714 1.88e-4 –

2 41250000 1042 2.64e-4 1.02
3 26275000 970 1.65e-4 1.1

50000 18 1 448200000 3309 1.5e-4 –

2 179300000 1713 2.37e-4 –

3 133200000 1541 4.15e-5 –

24 1 246500000 2162 3.62e-4 –

2 120250000 1429 2.47e-4 –

3 74300000 1052 1.37e-4 1.01
30 1 185250000 1837 2.91e-4 –

2 78900000 1076 3.2e-4 –

3 54900000 989 2.56e-4 1.07

432 F. Maqbool et al.

It can be seen from Table 2 that for higher values of Mi (i.e. 100000), each function
consumes less time in most of the cases. Broadcasts are also important as they help
each sub-population Pj to increase it’s diversity and helps each Pj to get out of local
optima. Increased Mi values reduces frequent broadcasts and hence the network
overhead. In case of higher Mi, more number of iterations may not improve the optima
significantly, due to reduced diversity in the particular sub population. Table 2 reveals
the discussed fact as Error is less for Mi = 50000 as compared to Mi= 100000 in most
of the cases.

6 Conclusion

In this paper, we have proposed initial results for S-GA using Apache Spark for large-
scale optimization problems. The results have been compared with SeqGA. We have
tested S-GA for Sphere, Ackley, Griewank, Rastrigin, Zakharov, and Sum-of-
Different-Powers functions that are typical benchmarks for continuous optimization
problems. We have used population size of up to 3000, Dimensions of up to 3000,
Partition Size up to 30, Migration Size up to 03, and Migration Interval to 100000. For
few cases S-GA has outperformed SeqGA for higher Population, Partitions, Migration
Size, and Migration Interval in term of execution time. In future, we plan to extend S-
GA and evaluate different migration and distribution strategies for larger scale and
more complex optimization problems.

Acknowledgment. This work was partly supported by the EU Horizon2020 projects Boost4.0
(GA no. * 780732), LAMBDA (GA no. * 809965), SLIPO (GA no. * 731581), and
QROWD (GA no. * 723088).

Table 2. Experimental Results of S-GA.

f Mi D = 1000 D = 2000 D = 3000

VTR = 0.001 VTR = 5.0 E-4 VTR = 3.33 E-4

G Time Error G Time Error G Time Error

Sphere 50000 1e9 556 8.28 1e9 11531 0.004 1e9 18904 0.017

100000 1e9 282 265.05 1e9 5932 0.003 1e9 12227 5.967
Ackley 50000 1e9 5616 0.009 1e9 11799 0.095 1e9 17609 1.27

100000 1e9 2613 0.02 1e9 5819 0.015 1e9 9456 2.07

Griewank 50000 4.4e7 262 2.52e-4 1.2e8 1429 2.47e-4 2.1e9 3917 1.25e-4
100000 9.6e7 277 6.23e-4 2.4e6 1417 1.41e-4 4.1e9 3732 2.47e-4

Rastrigin 50000 1e9 5339 0.024 1e9 11513 1.443 1e9 18594 0.067
100000 1e9 2623 2.081 1e9 5809 0.907 1e9 9447 52.45

Zakharov 50000 1e9 5575 17035.15 1e9 11779 33111.93 1e9 16048 10249.73

100000 1e9 2896 16803.21 1e9 5783 33205.55 1e9 9036 50674.89
Sum of
Diff
Powers

50000 200000 6 4.59e-4 250000 10 3.16e-4 700000 19 1.6e-4
100000 400000 6 2.82e-4 400000 8 4.5e-4 600000 11 1.42e-4

Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA) 433

References

1. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real-World Applications.
Springer, Heidelberg (2011)

2. Knysh, D.S., Kureichik, V.M.: Parallel genetic algorithms: a survey and problem state.
J. Comput. Syst. Sci. Int. 49(4), 579–589 (2010)

3. Chávez, F., et al.: ECJ + HADOOP: an easy way to deploy massive runs of evolutionary
algorithms. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598,
pp. 91–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31153-1_7

4. Di Geronimo, L., Ferrucci, F., Murolo, A., Sarro, F.: A parallel genetic algorithm based on
hadoop MapReduce for the automatic generation of JUnit test suites: In: IEEE International
Conference on Software Testing, Verification and Validation (2012)

5. Salza, P., Ferrucci, F., Sarro, F.: Develop, deploy and execute parallel genetic algorithms in
the cloud. In: Genetic and Evolutionary Computation Conference (GECCO) (2016)

6. Zheng, L., Lu, Y., Ding, M., Shen, Y., Guoz, M.: Architecture-based performance evaluation
of genetic algorithms on multi/many-core systems. In: IEEE International Conference on
Computational Science and Engineering (2011)

7. Hashem, I.T., Anuar, N.B., Gani, A.Y., Xia, F., Khan, S.U.: MapReduce review and open
challenges. Scientometrics 109, 389–422 (2016)

8. Ferrucci, F., Pasquale, S., Federica, S.: Using hadoop MapReduce for parallel genetic
algorithm: a comparison of the global, grid and island models. Evol. Comput. Early Access
26(4), 535–567 (2017)

9. Qi, R.Z., Wang, Z.J., Li, S.-Y.: A parallel genetic algorithm based on spark for pairwise test
suite. J. Comput. Sci. Technol. 31(2), 417–427 (2016)

10. Hu, C., Ren, G., Liu, C., Li, M., Jie, W.: A spark-based genetic algorithm for sensor
placement in large-scale drinking water distribution systems. Cluster Comput. J. Netw.
Softw. Tools Appl. 20(2), 1089–1099 (2017)

11. Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., Lee, B.-S.: Efficient hierarchical parallel genetic
algorithm using grid computing. Future Gener. Comput. Syst. 23(4), 658–670 (2007)

12. Liu, Y.Y., Wang, S.: A scalable parallel genetic algorithm for the generalized assignment
problem. Parallel Comput. 46, 98–119 (2015)

13. Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T.: Hybridizing genetic algorithm with
differential evolution for solving the unit commitment scheduling problem. Swarm Evol.
Comput. 23, 50–64 (2015)

14. Gu, L., Li, H.: Memory or time performance evaluation for iterative operation on hadoop and
spark. In: High-Performance Computing and Communications and IEEE International
Conference on Embedded and Ubiquitous Computing (HPCC EUC) (2013)

15. Wani, M.A., Jabin, S.: Big data: issues, challenges, and techniques in business intelligence.
In: Aggarwal, V.B., Bhatnagar, V., Mishra, D.K. (eds.) Big Data Analytics. AISC, vol. 654,
pp. 613–628. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6620-7_59

16. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on
separability, population size, and convergence. CIT J. Comput. Inf. Technol. 7(1), 33–47
(1999)

17. Verma, A., Llorà, X., Goldberg, D.E., Campbell, R.H.: Scaling simple, compact and
extended compact genetic algorithms using MapReduce. Illinois Genetic Algorithms
Laboratory (Illinois) report no. 2009001, illegal, University of Illinois, Urbana-Champaign
(2009)

18. Keˇco, D., Subasi, A.: Parallelization of genetic algorithms using hadoop Map/Reduce.
SouthEast Eur. J. Soft Comput. 1(2), 56–59 (2002)

434 F. Maqbool et al.

http://dx.doi.org/10.1007/978-3-319-31153-1_7
http://dx.doi.org/10.1007/978-981-10-6620-7_59

19. Osuna, E.C., Gao, W., Neumann, F., Sudholt, D.: Speeding up evolutionary multi-objective
optimization through diversity-based parent selection. In: Genetic and Evolutionary
Computation Conference, Berlin, Germany (2017)

20. Gao, W., Neumann, F.: Runtime analysis of maximizing population diversity in single-
objective optimization. In: Genetic and Evolutionary Computation Conference, Vancouver,
Canada (2014

21. Junior, B.A., Pinheiro, P.R., Coelho, P.V.: A parallel biased random-key genetic algorithm
with multiple populations applied to irregular strip packing problems. Math. Probl. Eng.
2017, 11 (2017)

22. Gronwald, F., Chang, S., Jin, A.: Determining a source in air dispersion with a parallel
genetic algorithm. Int. J. Emerg. Technol. Adv. Eng. 7(8), 174–185 (2017)

23. Lissoni, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic
optimization. Algorithmica 78(2), 641–659 (2017)

24. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel
evolutionary algorithms. In: 11th Workshop Proceedings on Foundations of Genetic
Algorithms, Schwarzenberg, Austria (2011)

25. Shoro, A.G., Soomro, T.R.: Big data analysis: apache spark perspective. Global J. Comput.
Sci. Technol. 15(1), 09–14 (2015)

26. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 56–65 (2016)

27. Witt, C.: Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean functions. Evol.
Comput. 14(1), 65–86 (2006)

28. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 59–65 (2016)

29. Armbrust, M., et al.: Spark sql: relational data processing in spark. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394.
ACM, May 2015

30. Meng, X., et al.: MLlib: machine learning in apache spark. J. Mach. Learn. Res. 17(1),
1235–1241 (2016)

Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA) 435

	Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA)
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Apache Spark
	3.2 Sequential Genetic Algorithm (SeqGA)

	4 Scalable Distributed Genetic Algorithm Using Apache Spark (S-GA)
	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation Matrics

	6 Conclusion
	Acknowledgment
	References

