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Abstract—SPARQL is a W3C standard for querying the
data stored as Resource Description Framework (RDF). The
SPARQL queries are represented using triple-patterns, and the
querying process searches for these patterns in given RDF.
Most of the existing SPARQL evaluators provide centralized,
DBMS inspired solutions consuming high resources and offering
limited flexibility. To deal with the increasing size of RDF data,
it is important to develop scalable and efficient solutions for
distributed SPARQL query evaluation. In this paper, we present
DISE – an open-source implementation of distributed in-memory
SPARQL engine that can scale out to a cluster of machines.
DISE represents the RDF graph as a three-way distributed
tensor for querying large-scale RDF datasets. This distributed
tensor representation offers opportunities for novel distributed
applications. DISE translates the SPARQL queries into Spark-
tensor operations by exploiting the information about the query
complexity and creating a dynamic execution plan. We have
tested the scalability and efficiency of DISE on different datasets.
The results for this new representation based querying have been
found scalable, efficient and comparable to a similar approach.

I. INTRODUCTION

Knowledge Graphs (KG)s have gained lots of traction in
recent years for their ability to ingest heterogeneous data
in a machine-readable form. Semantic Web presents a well-
established format to represent KGs using Resource Descrip-
tion Framework (RDF)1. RDF represents a KG as a set of
triples, where each triple represents two vertices and an edge of
the graph. The W3C standard querying language for RDF data
is SPARQL Protocol and RDF Query Language (SPARQL)2.
Owing to wider acceptance of RDF among multiple fields
like bioinformatics, life sciences, business intelligence, social
networks, and many others, we count more than 10,000
RDF datasets available online3. The size and number of

1 https://www.w3.org/TR/rdf11-concepts/
2 https://www.w3.org/TR/rdf-sparql-query/
3 http://lodstats.aksw.org/

these datasets are continuously increasing and as a result,
efficient processing and analysis of these large RDF datasets
have become necessary. Scalable RDF querying requires dis-
tributed storage and efficient searching strategies for query-
processing engines. Indeed, there is a strong need to develop
fundamentally new approaches that leverage the existing (big
data) processing engines (e.g. Apache Spark4) and develop
approaches that are both efficient and scalable.

In this paper, we present DISE, that not only exploits in-
memory distributed processing to achieve scalability, but also
utilizes a distinct RDF representation; as tensors. DISE can
deal with the volatile data and it does not use statistics of
data to achieve fast performance, instead, it executes SPARQL
queries as tensor operations by using Apache Spark as the
scalable RDF processing engine. We have integrated DISE as
a new SPARQL engine in SANSA [1], the scalable semantic
analytics stack built to allow scalable RDF processing using
Apache Spark.

In summary, the major contributions of this paper are:
• A distributed tensor representation of RDF data.
• An efficient SPARQL to the tensor-operation translator

in Spark-Scala compliant code.
• Query decomposition for dynamic query execution plan-

ning
• Empirical evaluation for scalability.
• Comparative evaluation with the semantic-query-engine

in SANSA.
• Integration into the SANSA framework.
The remaining of the paper is organized as follows: Sec-

tion II discusses the supplementary information for this work.
Section III provides an overview of the related work. Sec-
tion IV describes the architecture of DISE. Section V is
devoted to the implementation details of DISE, experimental
setup, the datasets, and SPARQL queries used for evaluation.
Section VI summarizes the main results of this work and
discusses the prospects for further development of DISE.

4 http://spark.apache.org/
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II. PRELIMINARIES

A. Resource Description Framework and Tensors

1) Resource Description Framework (RDF): RDF is de-
fined as a formal language for describing structured informa-
tion [2]. The RDF statements are represented in the form of
triples (see, [3], [4], [5]) as 〈s, p, o〉, where s, p and o are
called subject, predicate and object respectively. These triples
in RDF are built from three disjoint sets I, B, and L containing
IRIs, blank nodes and literals. For validity it is required that
s ∈ I ∪B, p ∈ I, and o ∈ I ∪B∪L. It is important to note
that sets I, B and L are countable and finite. This property
enables indexing or ordering of elements in these sets.

2) Tensor representation of RDF: RDF triples 〈s, p, o〉, can
be modeled [6] as a 3D tensor R, where each of its slices
represents an adjacency matrix of ”subject-and-objects” s ∪
o, and predicates p (property/edge). Bader et al. [7] define
tensors as multidimensional arrays that can be viewed as an
ordered collection of slices or columns. Where a slice is a
two-dimensional tensor, a column is a one-dimensional tensor.
Furthermore, an N -dimensional tensor can be represented as
a product of one-dimensional tensors.

Definition II.1 shows that RDF tensor R is a 3D tensor.

Definition II.1 (RDF Tensor). Let G be RDF graph. The RDF
tensorR := R(G) on G is a matrix such thatR = ri,j,k := 1,
if 〈 S−1(i), P−1(j), O−1(k)〉 ∈ G and R = ri,j,k := 0
otherwise. Here S : S −→ N, P : P −→ N, O : O −→ N
are the indexing functions for distinct subjects, predicates and
objects.

B. SPARQL and Degree of Freedom

1) Structure of a SPARQL query: According to W3C
recommendation [8], SPARQL is a technology developed for
extraction and modification of data stored in RDF graphs. It
allows to perform complex operations on data such as infor-
mation retrieval, searching, filtering based on given criteria,
or transformation etc. SPARQL query contains a Basic Graph
Pattern (BGP) with a structure similar to RDF triples, each
triple in BGP is the query triple pattern (TP ). However, any
subject, predicate or object in the query TP can be a variable,
represented with a preceding question mark. The variables in
TP s of a BGP can be overlapping. There are different types
of SPARQL queries, but we focus on the SELECT query that
returns variables and their bindings directly. A SPARQL query
includes five sections:

1) Optional headers for a human-readable query e.g.
PREFIX that describes prefix declarations for abbrevi-
ated URIs, it reduces the URIs used in the query.

2) Standard allowed query forms e.g. SELECT that com-
poses the resulting clause.

3) Optional clauses that specify the dataset e.g. FROM that
determines the source i.e. defines the RDF dataset being
queried.

4) WHERE clause that specifies the basic graph pattern
(BGP) to match and defines the constraints of the query.

The basic BGPs combine several TP s using conjunc-
tion.

5) Optional solution modifiers operating over the result set
e.g. ORDER BY, LIMIT and OFFSET can be used as
solution output modifiers.

2) Degree of Freedom of a SPARQL Query: The concept
of the degree of freedom (DOF ) of a query Q is introduced
in [9], where DOF is defined as ”a measure of a triple
pattern’s explicit constraints”.

Definition II.2 (Degree of Freedom). Let v and k be the
numbers of variables and constants in a triple t, respectively.
The degree of freedom of the triple t is the function defined
as dof(t) := v − k, dof ∈ {+3,+1,−1,−3}.

From Definition II.2 we have: TP with no constraints
has the highest DOF , equal to +3, and is associated to
variables only. TP having two variables and one constant
has dof(t) = +1; dof(t) = −1 means that TP is bounded
to one constant and contains two unbounded variables. The
lowest DOF corresponds to TP , bounded to three constants
i.e. dof(t) = −3.

C. Apache Spark

Apache Spark [10] is an open source platform for distributed
data processing. Spark is a general-purpose processing engine
that is suitable for use in a wide range of practical applications
for big data. Spark uses in-memory distributed processing to
achieve efficient performance The Apache Spark API [11] is
centred around the distributed data structure called Resilient
Distributed Dataset (RDD), that is a fault-tolerant multi-set
of read-only data elements distributed over a cluster. RDD
supports the implementation of iterative algorithms that access
the data iteratively, and for interactive intelligence analysis,
i.e. repeated data requests in the database. On top of the
core data processing engine employing RDDs, Spark provides
specialised libraries for SQL, machine learning, graph com-
putation, stream processing and APIs for Python, R, Java and
Scala (the native Spark language [12]).

D. SANSA

Scalable Semantic Analytics Stack (SANSA)5 [1] is a
framework that offers a set of libraries for distributed pro-
cessing of large-scale RDF data. SANSA provides libraries
for the layers corresponding to Semantic Web Layer cake:
RDF-representation layer, SPARQL, Inference and Analytics
layer.

III. RELATED WORK

Recent statistics indicate that currently, freely available RDF
data contains approximately 150 billion triples in about 3,000
datasets, many of which are accessible via SPARQL query
servers called SPARQL endpoints6. Many researchers have
focused on issues related to RDF data representation in query
processing, methods for reducing computational costs in terms

5 http://sansa-stack.net/
6 https://www.ifis.uni-luebeck.de/∼groppe/sbd/2018/aims-scope
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of space and time, as well as efficient methods to achieve
accurate results for querying large scale RDF data.

Representation for large distributed in-memory RDF data
includes various types of data partitioning. Horizontal par-
titioning of RDF data is used in TRiAD [13] engine for
distributed SPARQL processing. Another splitting approach
for RDF data is vertical partitioning (VP) used in [14], [15],
[16], [17], [9]. In [16] VP is used as so-called property tables.
Each table stores tuples 〈subject, object〉 associated with a
given predicate sorted by the subject, so individual subjects
can be located quickly.

S2RDF [17], a Hadoop-based SPARQL query processor for
large-scale distributed RDF data is implemented for Spark and
includes a new relational partitioning schema for RDF data
called ExtVP. To execute SPARQL queries through ExtVP,
S2RDF uses VP Extension as the basic data layout for RDF.
The results for a query TP with bound predicate can be
retrieved by accessing the corresponding VP table which leads
to a large reduction in the input size. However, it supports only
conjunction queries.

SPARQLGX [15] is based on Apache Spark and translates
conjunctive queries into Spark executable code. The authors
focus on the problem of evaluating the Basic Graph Pattern
fragment over an RDF dataset. Such fragments are composed
only of conjunctions of TP s, where each TP expresses
conditions that must be matched by RDF triple for selection.
The authors indicate that there are often relatively few distinct
predicates compared to the number of distinct subjects or
objects. To process a conjunction of query TP s, the TP
s are joined using their common variables as a key.

VP is used in [14] to create disjoint subsets of pairs (sub-
ject, object), per predicate. These subsets are represented as
binary matrices of subjects×objects in which 1 means that the
corresponding triple exists in the dataset. This model results in
very sparse matrices, which are compressed using k2-trees and
two compact indexes. The indexes list the predicates related
to different subject and object.The experiments show that this
method can overcome the shortcomings of traditional VP for
join resolution.

In [9] the authors propose to create an RDF tensor and use
DOF of a TP to improve the efficiency of distributed RDF
data processing. Using the RDF tensor, a significant reduction
in memory usage is achieved, while DOF helps to select TP
with the highest probability of decreasing the search space.

While being efficient, [14] and [9], are implemented using
sequential processing in C on a single machine. Therefore,
these approaches are not suitable for very large data and do
not offer scalable performance.

An analysis of the complexity of the SPARQL queries
is presented in [18], [19]. It is shown that operators AND
and UNION are commutative and associative, but AND, OP-
TIONAL and FILTER are distributive with respect to UNION
operator. Query evaluation can be solved in polynomial time
for Basic Graph Pattern(BGP) expressions constructed by
using AND and FILTER operators only; the evaluation is NP-
complete for BGPs built with AND, FILTER and UNION op-

Fig. 1. DISE Architecture Overview.
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erators; for BGPs that include the OPT operator, the evaluation
problem is PSPACE-complete.

M. Schmidt et al. in [20] discussed the SELECT, AND, FIL-
TER, OPTIONAL and UNION operators, that can be used to
construct expressive queries. The authors map the OPTIONAL
operator to a left outer join; AND, UNION, FILTER are
mapped to join, algebraic union, and selection respectively.
The SELECT is mapped as a projection operation. The au-
thors conclude that the evaluation of queries containing OP-
TIONAL or AND&OPTIONAL is PSPACE-hard; evaluation
of queries containing UNION or FILTER&UNION is PTIME-
complete; evaluation of queries containing AND&UNION is
NP-complete [20].

The problems of accuracy, correctness and effectiveness of
the developed approaches are discussed in [21], [22], [17], [9].

In summary, most of the literature covered above is either
not scalable, or the source has not been made public to help the
community. DISE addresses this gap and presents a scalable,
easy to use, and an open source research contribution.

IV. DISE

A. Architecture

The architecture of our ”Distributed in-Memory SPARQL
Processing Engine” DISE is presented in Figure 1. The figure
depicts the integration of DISE within SANSA. The DISE
represented by darker (green) shade. DISE transforms the
input RDF into a tensor representation that has been integrated
into the SANSA representation layer, whereas the tensor-based
querying is integrated into the SANSA query layer. The first
block (1) to the left makes use of the SANSA RDF reader.
It reads the input text file and converts it into an RDD of
triples for further data processing. The second block (2) creates
a tensor from the RDD of triples from the previous block.
The next block (3) receives the set of query strings as input
and converts them into Apache Jena7 Query objects. It also
recursively scans the query TP s to calculate the DOF of
each TP for query planning. Builder in the next block (4)
uses the results of two previous steps (2 and 3) to translate
the query into tensor operations and to calculate the query
result.

DISE processes SPARQL queries for large RDF datasets
in a distributed manner. It computes DOF for query TP to

7 https://jena.apache.org/
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estimate the query complexity. DISE does not require any pre-
computation of prior knowledge or initial data statistics for
the efficient querying. Since DOF measures the constraints of
a query TP , we start with the query TP that has the lowest
DOF value, and iteratively sexecute the results and select the
next TP with the highest probability of decreasing the search
space.

Our primary model based on the RDF tensor avoids storing
RDF data in triple form for better performance. The main idea
is to transform an original dataset into RDF tensor, split the
tensor, and process the query in parallel, starting with a query
TP with the lowest DOF . We have developed two methods
being used in our framework for parallel query processing.

B. Working

Algorithm 1 describes the distributed SPARQL query pro-
cessing in DISE. It takes the RDF data and a SPARQL query
string as an input. The algorithm creates an RDF tensor,
computes DOF for each query TP and calculates resulting
set of the query variables values concerning the DOF of the
query TP , which is detailed in Algorithm 2. The output of the
algorithm 1 is a key value pair resultingMap representing the
values of the variables from the input SPARQL query.

Algorithm 1: Distributed SPARQL query processing
via DOF
input : rdf : RDF : RDF dataset, query: SPARQL

query
output: resultingMap : [V ar,RDD[Node]]: Map with

RDD of nodes associated to the query result
variables

1 RDD : dataset ← rdf.toRDD < Triple > ()
2 subjects, predicates, objects ←

zipWithIndex(dataset)
3 tensor ←

dataset.join(objects).join(predicates).join(subjects)
4 tensor ← tensor.map(predicates, subjects, objects)
5 dofs ← RecursiveElementV isitor.visit(query)
6 resultingMap ←Map[V ar,RDD[Node]]()
7 while dofs 6= ∅ do
8 dof, triple ← dofs.dequeue()
9 tempMap ←

tensor.process(triple, ResultingMap)
10 dofs.recalculate()
11 resultingMap ← bindResults(tempMap)

12 return resultingMap

Line 1 of the Algorithm 1 loads RDF data from the physical
storage and returns an RDD of triples using SANSA API.
Line 2 identifies all unique items of the dataset, i.e. subjects,
predicates and objects, and store them into the RDD of
indexes. Line 3 creates an RDD of indexes at their respective
positions as in triples RDD. Line 4 represents the final tensor
with indexes at the representative positions. This process from
line 1 – line 4 is illustrated in Figure 2.

Fig. 2. RDF-to-Tensor transformation.

For large-scale RDF datasets p – the number of predicates
is significantly smaller than s – the number of subjects and
o – the number of objects (see, also, [15], [23]). Using the
definition of RDF triple (see [9]) and Definition II.1, we get
the inequality:

p� s � o, p := max(P), s := max(S), o := max(O).
(1)

Thus, in order to optimize the performance, we modify the
RDF tensor at Line 4 by placing the predicate column in the
first position.

RecursiveElementV isitor (Line 5) reads the input query,
traverses each TP and calculates the initial values of the DOF
for each TP . As a result, it returns a priority queue of pairs of
the query TP s along with their corresponding DOF values
(i.e. high priority corresponds to the low DOF ). Lines 7 – 11
iterate over these pairs to obtain intermediate computations in
the form of the map object for TP (Line 9). Algorithm 2 (
described later) covers the detail. Each iteration of the while
loop calculates a map with an RDD of values associated to
the current query variables. We must recompute the DOF of
the remaining constraints, since a variable can be promoted to
the role of the constant (Line 10).

Query TP processing is performed by Tensor.process
method (Line 9), as shown in Algorithm 2, it takes as input a
query triple pattern tp and a map M , in which the keys are the
variables from the query TP s. At the beginning we associate
an empty RDD to each key, i.e. M is empty. As we traverse
the query TP s recursively, M will contain results from the
previous computations.

The Algorithm 2 processes the tensor using the information
from individual triple pattern TP of the query. It takes as
an input a key value Map, with variables as keys and their
bindings as values of the Map. This map is updated with
respect to the triple pattern under processing. Line 2 processes
the predicate, subject and object node of the TP iteratively.
Line 3 searches the variable, in the existing Map, if the value
already exists from previous computations, the value is added
to the resultSet. if not, the value of the particular node is
extracted from the original tensor and added to the resultSet.
If the node is not a variable, its value is extracted from the
tensor and stored in resultSet. Same process is repeated with
the three nodes of the triple pattern and the resultSet is passed



Algorithm 2: Tensor processing
input : tp : TriplePattern,

m : Map[V ar, V alues[Node]]: Map with the
results of previous computations

output: result : Map[V ar, V alues[Node]]: Map with
values associated to each variable

1 index ← 0
2 while tp = getNode(TP [index]) do
3 if tp.isV ariable then
4 isBounded ← m.hasKey(tp)
5 if isBounded then
6 resultSet ← tensor.nodes.join(M.get(tp))
7 else
8 resultSet ← tensor.nodes(index)

9 else
10 resultSet ← tensor.nodes.filter(current ==

triplePart)

11 index + +

12 M.update(resultSet)
13 return m

to update the Map value with corresponding variables and their
values in Line 12.

bindResults at Line 11 in Algorithm 1 merges the map
returned by the Algorithm 2 for one TP with the resulting
map, containing the query pattern variables for all query TP s.
Finally, the resultingMap returns the variable results for the
SPARQL query.

C. DISE as a resource

The RDF-to-Tensor scalable representation offered in DISE
has its use in a multitude of machine learning applications
e.g. embedding models for link prediction [24] like TransE,
TransH, or RESCAL, clustering algorithms, or anomaly de-
tection. DISE can play a vital role to improve the state of
the art in scalable machine learning models exploiting the
RDF-to-Tensor representation. In order to target reproduca-
bility, the DISE-code is open source 8 and the results have
been generated on generic and openly available data. DISE
demonstrates a SPARQL query engine as one of the practical
use of this tensor representation. DISE is easy to use and its
documentation9 is the part of SANSA documentation.

D. Complexity Evaluation

To evaluate the effectiveness of DISE, we have applied
two methods: theoretical evaluation for classifying the method
as being P-hard or NP-hard and empirical evaluation of
experimental results for execution time T (M) on a data-set
having size M .

Below we present an estimate in terms of a size of RDF
dataset. We show that the theoretical complexity of DISE is

8 https://github.com/SANSA-Stack/SANSA-Query/tree/develop/sansa-query-spark/
src/main/scala/net/sansa stack/query/spark/dof

9 http://sansa-stack.net/dise/

TABLE I
USED NOTATIONS

Notation Description

RV Number of Result Variables
NV Number of Variables
NT Number of Triples
CV Number of Common Variables
U Union
C Conjunction
O Optional

polynomial; obtained right-hand estimate shows the asymp-
totic behavior over time, which depends on the size of data.
Table I represents the notations used in this and the following
sections.

Lemma IV.1. Let N be a number of all unique objects of
the RDF tensor. Then in proposed approach the calculation of
resulting RDD from RDF tensor is a P-solvable problem:

TRDD = O(N2)� TRDF = O(N3). (2)

Proof: From the triple definition it follows that in Carte-
sian coordinate system RDF tensor can be represented as
3D cube with the dimensions along the axes equal to s, p,
o (see (1)). So, the maximum size of the dataset does not
exceed s × p × o. From (1) it follows that s � o and
p =: c � o := N ∈ N, c = const ∈ N. Thus, RDD
size does not exceed cN2, and any greedy algorithm handles
at most cN2 points of 3D cube. Therefore, the problem is P-
solvable and TRDD = O(N2). The right side of (2) is trivial.

Since (2) is satisfied for any greedy search algorithm (i.e.
in the worst case), it holds for all efficient ones. Calculated
once RDF tensor can be applied for querying any number of
times and may significantly reduce the overall execution time.

Lemma IV.1 holds for a simple SELECT query with
NV � 3. In conjunctive queries NV > 3 and NT > 1,
so we consider this case. Let several simple sub-queries (i.e.
the query TP s) be conjugated and, the search is performed
over m query TP s, k variables of all query TP s, and n CV
of all query TP s, k ≥ 1, m ≥ 1, n ≥ 0. Note, if all the
query TP variables are different, then n = 0; if m = 1, then
the query contains only one query TP (i.e. the simplest case).

Theorem IV.1. Let conjunctive query Qk,m,n has k variables,
m triples and n common variables, k ≥ 1, m ≥ 1, n ≥ 0.
Then

i) Complexity of Qk,m,n is defined by the values k, m, n.
ii) Response time T (Qk,m,n) = f(m), where f(m) is an

increasing function on a variable m for any fixed k, n.
iii) T (Qk,m,n) = g(k), where g(k) is an increasing function

on a variable k for any fixed m and n.
iv) T (Qk,m,n) = h(n), where h(n) is an increasing func-

tion on a variable n for any fixed m and k.

Proof: We prove (ii) by induction. For m = 1 it follows
from the fact that a simple query TP has at most three

https://github.com/SANSA-Stack/SANSA-Query/tree/develop/sansa-query-spark/src/main/scala/net/sansa_stack/query/spark/dof
https://github.com/SANSA-Stack/SANSA-Query/tree/develop/sansa-query-spark/src/main/scala/net/sansa_stack/query/spark/dof
http://sansa-stack.net/dise/


variables, and its response time is bounded from above by Nk

for k variables, k � 3, and n ≡ 0. Suppose that the formula in
(ii) holds for any m1 > 1 and let show that it will be satisfied
for m = m1 + 1. The query used conjunction of m = m1 + 1
query TP s with k variables and n CV. The response time
of conjunction of m1 simple queries with k1 variables and n1

CV is f(m1). Hence, we have that conjunction of m = m1+1
simple queries has no more than k � k1 +3 variables (and no
more than n� n1 + 3 CV). And it follows that the response
time of the conjunction of m = m1 + 1 simple sub-queries
is bounded from above by n3f(m1), which is an increasing
function. Note that the increasing of the number of CV can
only reduce the power of N3, since an increase in the number
of CV may include those, already presented in m1, but in any
case such an increase cannot be greater than 3. (iii) is proved
in the similar way. (i) follows from (ii) and (iii). (iv) is proved
in the same way as (ii), with the only difference that instead
of the function h(n1) we have n > n1 and ∆ := n− n1 > 0;

from this we get N−∆h(n1) =
h(n1)

N∆
< h(n1).

V. EXPERIMENT AND EVALUATION

A. Datasets, Queries and Cluster Environment

We have evaluated the performance of DISE over several
DBpedia [25] datasets with varying sizes detailed in Table II.

TABLE II
DATASET CHARACTERISTICS (NT FORMAT)

Dataset Number of Triples Size (in Gb)

D14 17M 2.7
D25 41M 6.6
D36 79M 20.8

The evaluation was done on a cluster with 2 executors
having a total of 128 cores and 150 Gb memory. Each server
has Xeon Intel CPUs with 2.3GHz, 256GB of RAM and
400GB of disk space, running Ubuntu 16.04.3 LTS (Xenial)
and connected via a Gigabit Ethernet2 network. We have used
Spark Standalone mode with Spark version 2.2.1 and Scala
version 2.11.11. For testing the query performance, we have
used the set of 25 queries [9] containing a combination of
operators Distinct, Optional, Union, Filter, Conjunction. We
will mostly discuss the results of nine queries selected in
order of varying complexity. Table III shows an overview of
the complexity of selected queries w.r.t. different parameters
shown in Table I.

B. Performance evaluation of DISE

The results reported in this section are average response
time (in ms) of ten cold runs for each query (as in [22]). As
anticipated, we have observed that the run-time of the queries
depends on their complexity, which is a combination of the
NV, TP and CV. Figure 3 shows that the runtime increases

4http://downloads.dbpedia.org/3.9/simple/
5http://downloads.dbpedia.org/3.9/ro/
6http://downloads.dbpedia.org/3.9/uk/

TABLE III
QUERY COMPLEXITY

Query RV NV TP CV U C O

Q1 1 2 1 0
Q2 3 4 4 1 + +
Q3 3 4 5 3 + +
Q4 8 10 11 1 + +
Q5 3 5 3 2 + +
Q6 1 3 2 1 +
Q7 8 8 8 1 + + +
Q8 5 5 4 2 +
Q9 3 5 2 1 +

as a function of the number of variables in the query. Figure
4 demonstrates that the runtime increases with the increase in
number of triple patterns in the queries, and Figure 5 indicates
that the execution time increases with the increase in number
of common variables (resulting in joins) in the queries.

Fig. 3. Effect of number of variables NV on query execution time

Fig. 4. Effect of Number of Triple Patterns TP on query execution time

Table IV presents the runtime of the selected queries. Look-
ing at the complexity from Table III we can see that Q8 having
the same number of query TP s as Q2 (although one more
variable) has a shorter runtime than Q2 due to the fact that
Q2 has an OPTIONAL, and it needs to perform joins between
large amount of triples that influences the performance. The

http://downloads.dbpedia.org/3.9/simple/
http://downloads.dbpedia.org/3.9/ro/
http://downloads.dbpedia.org/3.9/uk/


TABLE IV
QUERY RUNTIME OF DISE (IN MS)

Query (D1) (D2) (D3)

Q1 242 243 239
Q2 580 573 630
Q3 722 804 929
Q4 1,482 1,467 1,472
Q5 503 503 509
Q6 360 379 369
Q7 987 1,106 1,129
Q8 581 567 575
Q9 425 426 424

comparison of runtime of Q5 and Q8 (Q5 has one more query
TP , and same NV and CV) confirms (ii) from Theorem IV.1
and shows that the query runtime is an increasing function
on the number of the query TP s for any fixed values of
NV and CV. The analysis of runtime of Q6 and Q9, with Q9
having two more NV, same TP and CV, shows that the runtime
increases with the number of variables for any fixed values of
TP and CV (see (iv) in Theorem IV.1). This can be observed
that DISE supports a range of complex and simple queries.
The execution time shown in the evaluations increases with
the query complexity. However, the simpler queries are more
common in practice [26], resulting in relatively less execution
time for real life usecases.

Fig. 5. Effect of common variables CV on query execution time

C. Scalability of DISE

In order to test the scalability of DISE, we have evaluated
the runtime performance of 25 queries on datasets of varying
sizes. The results reveal that the DISE has the ability to
scale up with the increasing size of data. Figure 6 shows
that the runtime of queries increased 1.2 times, from 0.2ms to
1.5s, when datasize increased by 3.2 times; thus, the runtime
increased proportionally to the dataset size, that has increased
from 2.7 Gb to 20.8 Gb, i.e. from 17M triples to 79M triples,
see Table IV. This is an anticipated behaviour, as the larger
data size requires larger resources in turn, effecting the query
execution time. With this observation we demonstrate that
DISE can scale-up to larger data.

Fig. 6. DISE Scalability Diagram.

TABLE V
QUERY RUNTIME OF SANSA (IN MS)

Query (D1) (D2) (D3)

Q1 112 192 194
Q2 679 732 702
Q6 285 264 371
Q8 419 469 444
Q9 313 324 360

D. Comparison with SANSA query engine

In order to compare SANSA and DISE, the queries are
executed on datasets D1, D2, D3 using SANSA semantic-
based [27] query engine. The semantic-based query engine
in SANSA is a scalable approach for efficient evaluation
of SPARQL queries over distributed RDF datasets. It uses
a semantic-based partitioning strategy by grouping into a
subject-based facts (e.g. all entities which are associated with a
unique subject) as the data distribution and converts SPARQL
to Spark executable code. It is important to note the funda-
mental difference in ”Semantic Partition based query engine
in SANSA” and DISE. Both approaches follow a completely
different representation and are therefore not directly com-
parable. However, we present this comparison only to show
that performance of DISE is comparable with another scalable
query engine. The response times for SANA are shown in
Table V.

The Figure 7 shows the performance comparison of DISE
and SANSA engine corresponding to a few selected queries
over the three datasets, the three lines (depicted with red-
orange shades) demonstrate the response time of SANSA on
datasets D1, D2, D3, respectively), and the second group of
lines (depicted in shades of green) show the response time
obtained using DISE on the same datasets. Here, this can be
observed that the performance of DISE is almost comparable
to SANSA, in addition to being scalable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present DISE – a scalable distributed
in-memory SPARQL engine using Apache Spark. DISE is
based on the representation of RDF as tensor and utilises the



Fig. 7. Comparison Scalability DISE and SANSA (lines with shades of blue
and green corresponded to DISE and red corresponde to SANSA relatively).

DOF of the query TP to determine the query complexity and
creating a dynamic execution plan. DISE in integrated into
SANSA. It extends the functionality of SANSA Knowledge
Representation Layer and Query Layer. The empirical evalua-
tion of DISE shows its performance over a range of different
queries with varying complexity, demonstrating that DISE is
a generic SPARQL processing engine. We also showed that
the runtime of query evaluation is proportional to the query
complexity. The scalability of DISE was shown by evaluating
the performance over a range of dataset with varying sizes. In
addition, the results of DISE are comparable with an existing
SANSA query engine. In future, we plan to include other
types of SPARQL queries. We want to optimize the tensor
operations, in order to obtain faster joins and more efficient
runtime performance.
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