

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

SANSA: Distributed Semantic
Analytics

Killing two birds with one stone…
Why not installing SANSA during the presentation? 😉

❖ From a the SANSA-Notebooks github repository

<https://github.com/sansa-stack/sansa-notebooks>

❖ Requirements:
➢ docker
➢ docker-compose

❖ Only 5 commands:
➢ git clone https://github.com/sansa-stack/sansa-notebooks

➢ cd sansa-notebooks/

➢ make

➢ make up

➢ make load-data

➢ Goto: http://localhost/

2

https://github.com/sansa-stack/sansa-notebooks
https://github.com/sansa-stack/sansa-notebooks
https://github.com/sansa-stack/sansa-notebooks
https://github.com/sansa-stack/sansa-notebooks
https://github.com/sansa-stack/sansa-notebooks
http://localhost/

SANSA: Motivation
❖ Abundant machine readable structured information is

available (e.g. in RDF)
➢ Across SCs, e.g. Life Science Data
➢ General: DBpedia, Google knowledge graph
➢ Social graphs: Facebook, Twitter

❖ Need for scalable querying, inference and machine learning
➢ Link prediction
➢ Knowledge base completion
➢ Predictive analytics

3

Social Networks

Social Networks as Graphs

http://www.touchgraph.com/assets/images/TouchGraph%20Hashable%20SXSW.png

http://www.touchgraph.com/assets/images/TouchGraph Hashable SXSW.png

Knowledge Graphs

❖Modelling entities and their
relationships

❖ Analysis: finding underlying
structure of graph e.g. to predict
unknown relationships

❖ Examples: Google Knowledge
Graph, DBpedia, Facebook,
YAGO, Twitter, LinkedIn, MS
Academic Graph, WikiData

Knowledge Graph

Motivation
❖ Over the last years, the size of the Semantic Web has

increased and several large-scale datasets were published
➢ As of August 2018

Source: LOD-Cloud (http://lod-cloud.net/)

8

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Over the last years, the size of the Semantic Web has

increased and several large-scale datasets were published
➢ Based on LOD Stats (http://lodstats.aksw.org/)

Source: LOD-Cloud (http://lod-cloud.net/)

~10, 000 datasets
Openly available

online using Semantic
Web standards

9

http://lodstats.aksw.org/
http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Over the last years, the size of the Semantic Web has

increased and several large-scale datasets were published
➢ Based on LOD Stats (http://lodstats.aksw.org/)

Source: LOD-Cloud (http://lod-cloud.net/)

many datasets
RDFized and kept private

(e.g. Supply chain,
manufacture, ethereum

dataset, etc.)

~10, 000 datasets
Openly available

online using Semantic
Web standards

10

http://lodstats.aksw.org/
http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Dealing with such amount of data makes many tasks hard to

be solved on single machines

Source: LOD-Cloud (http://lod-cloud.net/)

11

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Dealing with such amount of data makes many tasks hard to

be solved on single machines

Source: LOD-Cloud (http://lod-cloud.net/)

Vocabulary
Reuse

Find a suitable
vocabulary for
your dataset

12

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Dealing with such amount of data makes many tasks hard to

be solved on single machines

Source: LOD-Cloud (http://lod-cloud.net/)

Vocabulary
Reuse

Find a suitable
vocabulary for
your dataset

Coverage
Analysis

Does dataset
contain

necessary
information?

 13

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Dealing with such amount of data makes many tasks hard to

be solved on single machines

Source: LOD-Cloud (http://lod-cloud.net/)

Vocabulary
Reuse

Find a suitable
vocabulary for
your dataset

Coverage
Analysis

Does dataset
contain

necessary
information?

Privacy
Analysis

Does dataset
contain

sensitive
information?

 14

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Motivation
❖ Dealing with such amount of data makes many tasks hard to

be solved on single machines

Source: LOD-Cloud (http://lod-cloud.net/)

Vocabulary
Reuse

Find a suitable
vocabulary for
your dataset

Coverage
Analysis

Does dataset
contain

necessary
information?

Privacy
Analysis

Does dataset
contain

sensitive
information?

Entity
Linking

Which datasets
are good

candidates for
interlinking?

15

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/

Tasks hard to solve on single machines (>1TB memory
consumption):

• Querying and processing LinkedGeoData
• Dataset statistics and quality assessment of the LOD Cloud
• Vandalism and outlier detection in Wikidata
• Inference on life science data (e.g. UniProt, EggNOG, StringDB)
• Clustering of DBpedia data
• Clustering of user-logs of the Big Data Europe integrator platform for the

creation of user profiles
• Large-scale enrichment and link prediction for e.g. DBpedia →

LinkedGeoData

Why Distributed RDF Data Processing?

16

SANSA Stack Vision

17

Why combining Big Data and SW?

“Big Data” Processing (Spark/Flink) Semantic Technology Stack

Data Integration Manual pre-processing Partially automated,

 standardised

Modelling Simple (often flat feature vectors) Expressive

Support for data

exchange

 Limited (heterogeneous formats

 with limited schema information)

 Yes (RDF & OWL W3C

 Recommendations)

Business value Direct Indirect

Horizontally

scalable

 Yes No

Idea: combine advantages of both worlds

18

SANSA Stack
❖ It’s core is a processing data flow engine that provides data

distribution, and fault tolerance for distributed computations
over RDF large-scale datasets

❖ SANSA includes several libraries for creating applications:
➢ Read / Write RDF / OWL library
➢ Querying library
➢ Inference library
➢ ML- Machine Learning core library

http://sansa-stack.net/

19

http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_OWL_API
http://sansa-stack.net/libraries/#RDF_Query_API
http://sansa-stack.net/libraries/#RDF_Query_API
http://sansa-stack.net/libraries/#RDF_Query_API
http://sansa-stack.net/libraries/#OWL_I_API
http://sansa-stack.net/libraries/#OWL_I_API
http://sansa-stack.net/libraries/#OWL_I_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/libraries/#RDF_OWL_ML_API
http://sansa-stack.net/
http://sansa-stack.net/
http://sansa-stack.net/

SANSA Layers

20 20

SANSA: Read Write Layer

21

SANSA: Read Write Layer
❖ Ingest RDF and OWL data in different formats using Jena /

OWL API style interfaces
❖ Represent data in multiple formats
➢ (e.g. RDD, Data Frames, GraphX, Tensors)

❖ Allow transformation among these formats
❖ Compute dataset statistics and apply functions to URIs,

literals, subjects, objects → Distributed LODStats

val triples = spark.rdf(Lang.NTRIPLES)(input)

triples.find(None,
Some(NodeFactory.createURI("http://dbpedia.org/ontology/influenced")), None)

val rdf_stats_prop_dist = triples.statsPropertyUsage()

22

SANSA: Read Write Layer features

RDF Data

Distributed

data

structures

D
a

ta
 r

e
p

re
s

e
n

ta
ti

o
n

G
ra

p
h

 p
ro

c
e

s
s

in
g

O
W

L

P
a

rt
it

io
n

in
g

 s
tr

a
te

g
ie

s

R
D

F
 s

ta
ts

Q
u

a
li
ty

 a
s

s
e

s
s

m
e

n
t

T
e

n
s

o
rs

/K
G

E

R
2

R
M

L
 M

a
p

p
in

g
s

SANSA Engine

23

SANSA: OWL Support
❖ Distributed processing of OWL axioms
❖ Support for Manchester OWL & functional syntax
❖ Derived distributed data structures:
➢ E.g. matrix representation of subclass-of axioms

to compute its closure via matrix operations

val rdd =spark.owl(Syntax.MANCHESTER)("file.owl")
// get all subclass-of axioms
val sco = rdd.filter(_.isInstanceOf[OWLSubClassOfAxiom])

24

RDF to Tensors (experimental)
• Tijk is 1 if triple (i-th entity, k-th predicate, j-th entity) exists

and 0 otherwise

25

SANSA: Query Layer

26

SANSA: Query Layer
❖ To make generic queries efficient and fast using:

➢ Intelligent indexing
➢ Splitting strategies
➢ Distributed Storage

❖ SPARQL query engine evaluation
➢ (SPARQL-to-SQL approaches, Virtual Views)

❖ Provision of W3C SPARQL compliant endpoint

val triples = spark.rdf(Lang.NTRIPLES)(input)

val sparqlQuery = "SELECT * WHERE {?s ?p ?o} LIMIT 10"

val result = triples.sparql(sparqlQuery)

 27

Querying via SPARQL &
Partitioning

SANSA Engine

RDF/OWL Layer

Data Ingestion

Partitioning

Query Layer

Sparqlifying
Distributed Data

Structures

Results Views Views

28

Querying via SPARQL &
Partitioning

29

SANSA-DataLake

❖ A solution for the virtual Big Data integration: Semantic Data Lake

➢ Directly query original data without prior

transformation/loading

❖ Scalable cross-source query execution (join)

❖ Extensible (programmatically)

➢ Do not reinvent the wheel: use existing engine connectors

(wrappers)

30

Querying via Semantic Data Lake
C

SV

SANSA Engine

D
a

ta
 L

a
k
e

 L
a

y
e

r

W
ra

p
p

e
rs

Q
u
e
ry

 L
a
y
e
r

Results

P
ar

q
u

et

M
o

n
go

 C
as

sa
n

d
ra

Databases

val result = spark.sparqlDL(query, mappings, config)

Distributed Data

Structures

SPARQL query
Data Lake

31

SANSA-DataLake

32

SANSA-DataLake

DF2 DF1 DFn

Join

ParSets

Relevant
Data Sources

Distributed
Query

Processing

Query
Decomposition

Mappings

DFr

Final Results

Data Wrapping
Relevant Entity

Extraction

Data Lake

Parallel
Operational
Area (POA)

Union

Config

Query

4

1

2 3

33

SANSA: Inference Layer

34

SANSA: Inference Layer
• The volume of semantic data growing rapidly
• Implicit information needs to be derived by reasoning

• Reasoning
 - the process of deducing implicit information from
existing RDF data by using W3C Standards for Modelling:
RDFS or OWL fragments

35

SANSA: Inference Layer
• Reasoning can be performed in two different strategies:

– The forward chaining strategy derives and stores the
derived RDF data back into original RDF data storage for
late queries from applications (data-driven).

– The backward chaining strategy derives implicit RDF data
on the fly during query process (goal-directed).

• The forward chaining strategy has lower query response
time and high load time.

36

SANSA: Inference Layer
• Parallel in-memory inference via rule-based forward chaining
• Beyond state of the art: dynamically build a rule dependency

graph for a rule set

→ Adjustable performance

→ Allows domain-specific customisation

37

SANSA: Inference Layer
Parallel RDFS Reasoning Algorithm based on Spark

Input RDD

Filtered RDDs

Input

Ontology

Intermediate Join

results RDD Single Rule

results

Rule Set

results

...

Iterate until fixed point iteration

filter

filter

filter

join

union

distinct

38

SANSA: Inference Layer
Some RDFS inference rules
• (X R Y), (R subPropertyOf Q) ➞ (X Q Y)
• (X R Y), (R domain C) ➞ (X type C)
• (X type C), (C subClassOf D) ➞ (X type D)

40

SANSA: Inference Layer

RDFS rule
dependency graph
(simplified)

41

SANSA: Inference Layer
Some OWL Horst Rules:
• p owl:inverseOf q, v p w ➞ w q v
• p owl:inverseOf q, v q w ➞ w p v

43

SANSA: Inference Layer
• Part of OWL Horst rule dependency

graph (simplified)

a) p owl:inverseOf q, v p w ➞ w q v

b) p owl:inverseOf q, v q w ➞ w p v

p rdfs:subPropertyOf q

, s p o ➞ s q o

p rdf:type owl:SymmetricProperty

v p u ➞ u p v

p rdf:type owl:TranstiveProperty

v p u

W p v

 ➞ u p v

44

SANSA: Inference Layer
• SANSA-Inference Layer support RDFs and OWL-Horst

reasoning in Triples and OWLAxioms

• Triple based forward chaining:

 // load triples from disk

 val graph = RDFGraphLoader.loadFromDisk(spark, input, parallelism)

 val reasoner = new ForwardRuleReasonerOWLHorst(spark.sparkContext)

 // compute inferred graph

 val inferredGraph = reasoner.apply(graph)

 45

SANSA: Inference Layer
• Axiom based forward chaining:

// load axioms from disk

var owlAxioms = spark.owl(Syntax.FUNCTIONAL)(input)

// create reasoner and compute inferred graph

val inferredGraph = profile match {

 case RDFS => new ForwardRuleReasonerRDFS(spark.sparkContext,

parallelism)(owlAxioms)

 case OWL_HORST => new

ForwardRuleReasonerOWLHorst(spark.sparkContext, parallelism)(owlAxioms)

 case _ => throw new RuntimeException("Invalid profile: '" +

profile + "'")

}
46

SANSA: ML Layer

47

SANSA: ML Layer
❖ Distributed Machine Learning (ML) algorithms that work on

RDF data and make use of its structure / semantics
❖ Algorithms:
➢ Graph Clustering

■ Power Iteration,
■ BorderFlow,
■ Link based
■ Modularity based clustering

➢ Association rule mining (AMIE+ = mining horn rules from RDF
data using partial completeness assumption and type
constraints)

➢ Outlier detection
➢ KG Kernels 48

Scope

49

RDF By Modularity Clustering
• A Hierarchical clustering method
• Starts with each vertex in its own community
• Iteratively join pairs of community choosing the one with

greatest increase in the optimizing function Q
– Optimization function identifies the significant community

structure

• The cut off point maximal value of Q.
• Scales as the square of the network size

50

RDFByModularityClusteringAlg(spark.sparkContext,
numIterations, input, output)

spark.stop

Power Iteration Clustering
• Simple and fast version of spectral clustering technique
• Efficient and scalable in terms of time O(n) and space
• Applying PowerIteration to the row normalized affinity

matrix
• Partitioning clustering algorithm

– Outputs one-level clustering solution

51

 val lang = Lang.NTRIPLES
 val triples = spark.rdf(lang)(input)
 val graph = triples.asStringGraph()
 val cluster = RDFGraphPowerIterationClustering(spark, graph,
output, k, maxIterations)
 cluster.saveAsTextFile(output)

BorderFlow Clustering
local graph clustering algorithm

Designing for directed and undirected weighted graphs

Clusters in BorderFlow:

Maximal intra-cluster density

Minimal outer-cluster density

52

val lang = Lang.NTRIPLES
val triples = spark.rdf(lang)(input)
val graph = triples.asGraph()

val borderflow = algName match {
 case "borderflow" => BorderFlow(spark, graph, output, outputevlsoft, outputevlhard)
 case "firsthardening" => FirstHardeninginBorderFlow(spark, graph, output, outputevlhard)
 case _ =>
 throw new RuntimeException("'" + algName + "' - Not supported, yet.")
 }

Link Based Clustering
• Hierarchical link clustering method
• Bottom up approach of hierarchical called the

“agglomerative”
• Clusters are created recursively
• The similarity S between links can be given by e.g. Jaccard

similarity
1. val lang = Lang.NTRIPLES
2. val triples = spark.rdf(lang)(input)
3. val graph = triples.asStringGraph()

4. AlgSilviaClustering(spark, graph, output, outputeval)

53

DBSCAN Clustering
• Clustering of POIs on the basis of spatially closed

coordinates.
• POIs located in same geolocation are clustered irrespective

of their categories.

54

1. val lang = Lang.NTRIPLES
2. val triples = spark.rdf(lang)(input)
3. val graph = triples.asStringGraph()

4. AlgSilviaClustering(spark, graph, output,

outputeval)

Numerical Outliers Detection
• Detecting numerical outliers in large RDF dataset.
• Spark minHashLSH used to create the cohort of similar class.
• A scalable approach to find the outliers in a massive dataset.
• Numerical outliers detected in the data are useful for

improving the quality of RDF Data

55

RDF Graph Kernels
Given an RDF graph constructing a tree for each instance and
counting the number of paths in it.

Literals in RDF can only occur as objects in triples and therefore
have no out-going edges in the RDF graph.

Apply Term Frequency-Inverse Document Frequency (TF-IDF)
for vectors.

56

1. val rdfFastGraphKernel = RDFFastGraphKernel(spark, triples,
"http://swrc.ontoware.org/ontology#affiliation")

2. val data = rdfFastGraphKernel.getMLLibLabeledPoints

3. RDFFastTreeGraphKernelUtil.predictLogisticRegressionMLLIB(data,

4, iteration)

Rule Mining
• Association Rule Mining under Incomplete Evidence (AMIE)
• Atoms : are facts with the subject and object position

substituted with variables e.g. (isChildOf(?a,?b))
• Rules : made up of atoms having a head (one atom) and the

body (multiple atoms)
• The body predicts the head
• A Rule can be written as

• OR

57

Interactive SANSA in your Browser

58

BDE & General Integration
❖ SANSA = Scala / Maven Repositories based on Spark / Flink
❖ Easy to include both in BDE platform and any Spark / Flink

environment

59

SANSA Planning and Pulse
❖ SANSA 0.6 in June 2018, releases every 6 months
❖ Apache Open Source License
❖ Project activity:
➢ Contributors (at least one commit): 17
➢ Commits per day: 5.9 - Commits previous year: 2175
➢ Github stars (all repos): 187

60

Conclusions and Next steps
❖ A generic stack for (big) Linked Data

➢ Build on top of a state-of-the-art distributed frameworks (Spark, Flink)

❖ Out-of-the-box framework for scalable and distributed
semantic data analysis combining semantic web and
distributed machine learning for (1) querying, (2) inference
and (3) analytics of RDF datasets.

❖ Next steps
➢ Support for SPARQL 1.1 and other partitioning strategies

(Query Layer)
➢ Backward chaining and better evaluation (Inference Layer)
➢ More algorithms and definition of ML pipelines (ML Layer)

61

Associated Publications
1. Distributed Semantic Analytics using the SANSA Stack by Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick

Westphal, Claus Stadler, Ivan Ermilov, Simon Bin, Muhammad Saleem, Axel-Cyrille Ngonga Ngomo and Hajira Jabeen in

Proceedings of 16th International Semantic Web Conference – Resources Track (ISWC’2017), 2017 [BibTex].

2. The Tale of Sansa Spark by Ivan Ermilov, Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler,

Simon Bin, Nilesh Chakraborty, Henning Petzka, Muhammad Saleem, Axel-Cyrille Ngomo Ngonga, and Hajira Jabeen in

Proceedings of 16th International Semantic Web Conference, Poster & Demos, 2017 [BibTex].

3. DistLODStats: Distributed Computation of RDF Dataset Statistics by Gezim Sejdiu, Ivan Ermilov, Jens Lehmann, and

Mohamed Nadjib-Mami in Proceedings of 17th International Semantic Web Conference, 2018. [BibTex]

4. STATisfy Me: What are my Stats? by Gezim Sejdiu; Ivan Ermilov; Jens Lehmann; and Mohamed-Nadjib Mami. In

Proceedings of 17th International Semantic Web Conference, Poster & Demos, 2018.

5. Profiting from Kitties on Ethereum: Leveraging Blockchain RDF with SANSA by Damien Graux; Gezim Sejdiu; Hajira

Jabeen; Jens Lehmann; Danning Sui; Dominik Muhs; and Johannes Pfeffer. In 14th International Conference on Semantic

Systems, Poster & Demos, 2018.

6. SPIRIT: A Semantic Transparency and Compliance Stack by Patrick Westphal, Javier Fernández, Sabrina Kirrane and

Jens Lehmann. In 14th International Conference on Semantic Systems, Poster & Demos, 2018.

7. Divided we stand out! Forging Cohorts fOr Numeric Outlier Detection in large scale knowledge graphs (CONOD) by

Hajira Jabeen; Rajjat Dadwal; Gezim Sejdiu; and Jens Lehmann. In 21st International Conference on Knowledge Engineering

and Knowledge Management (EKAW’2018), 2018.

8. Clustering Pipelines of large RDF POI Data by Rajjat Dadwal; Damien Graux; Gezim Sejdiu; Hajira Jabeen; and Jens

Lehmann. In ESWC 2019 (Poster Track).

62

http://jens-lehmann.org/files/2017/iswc_sansa.pdf
https://www.bibsonomy.org/bibtex/21ae18ac13750f9cf74227fe0a7c50104/aksw
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
https://www.bibsonomy.org/bibtex/2f9b5a69afa4755944984ae63f59ad146/aksw
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
https://www.bibsonomy.org/bibtex/2c1a8e1b76afe6b7d1bfe8d0e9d6895fd/aksw
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_spirit_pd.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf
https://dgraux.github.io/publications/PipingClustering_ESWC_2019_Poster.pdf

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

THANK YOU !

Prof. Jens Lehmann Dr. Damien Graux Dr. Hajira Jabeen

