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SANSA: Distributed Semantic 
Analytics 



Killing two birds with one stone… 
Why not installing SANSA during the presentation? 😉 

 

❖ From a the SANSA-Notebooks github repository 

<https://github.com/sansa-stack/sansa-notebooks> 

  

❖ Requirements: 
➢ docker 
➢ docker-compose 

❖ Only 5 commands: 
➢ git clone https://github.com/sansa-stack/sansa-notebooks 

➢ cd sansa-notebooks/ 

➢ make 

➢ make up 

➢ make load-data 

➢ Goto: http://localhost/  
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SANSA: Motivation 
❖ Abundant machine readable structured information is 

available (e.g. in RDF) 
➢ Across SCs, e.g. Life Science Data 
➢ General: DBpedia, Google knowledge graph 
➢ Social graphs: Facebook, Twitter  

❖ Need for scalable querying, inference and machine learning 
➢ Link prediction 
➢ Knowledge base completion 
➢ Predictive analytics 
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Social Networks 



Social Networks as Graphs 

http://www.touchgraph.com/assets/images/TouchGraph%20Hashable%20SXSW.png  

http://www.touchgraph.com/assets/images/TouchGraph Hashable SXSW.png


Knowledge Graphs 

❖Modelling entities and their 
relationships 

❖ Analysis: finding underlying 
structure of graph e.g. to predict 
unknown relationships 

❖ Examples: Google Knowledge 
Graph, DBpedia, Facebook, 
YAGO, Twitter, LinkedIn, MS 
Academic Graph, WikiData 

 



Knowledge Graph 



Motivation 
❖ Over the last years, the size of the Semantic Web has 

increased and several large-scale datasets were published 
➢ As of August 2018 

Source: LOD-Cloud (http://lod-cloud.net/ ) 
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Motivation 
❖ Over the last years, the size of the Semantic Web has 

increased and several large-scale datasets were published 
➢ Based on LOD Stats (http://lodstats.aksw.org/ ) 

Source: LOD-Cloud (http://lod-cloud.net/ ) 

~10, 000 datasets 
Openly available 

online using Semantic 
Web standards  
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Motivation 
❖ Over the last years, the size of the Semantic Web has 

increased and several large-scale datasets were published 
➢ Based on LOD Stats (http://lodstats.aksw.org/ ) 

Source: LOD-Cloud (http://lod-cloud.net/ ) 

many datasets 
RDFized and kept private 

(e.g. Supply chain, 
manufacture, ethereum 

dataset, etc.) 

~10, 000 datasets 
Openly available 

online using Semantic 
Web standards  
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Motivation 
❖ Dealing with such amount of data makes many tasks hard to 

be solved on single machines 

Source: LOD-Cloud (http://lod-cloud.net/ ) 
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Motivation 
❖ Dealing with such amount of data makes many tasks hard to 

be solved on single machines 

Source: LOD-Cloud (http://lod-cloud.net/ ) 

Vocabulary 
Reuse 

Find a suitable 
vocabulary for 
your dataset 
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Motivation 
❖ Dealing with such amount of data makes many tasks hard to 

be solved on single machines 
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your dataset 

 

Coverage 
Analysis 

Does dataset 
contain 

necessary 
information? 

 13 

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/


Motivation 
❖ Dealing with such amount of data makes many tasks hard to 

be solved on single machines 

Source: LOD-Cloud (http://lod-cloud.net/ ) 

Vocabulary 
Reuse 

Find a suitable 
vocabulary for 
your dataset 

 

Coverage 
Analysis 

Does dataset 
contain 

necessary 
information? 

 

Privacy 
Analysis 

Does dataset 
contain 

sensitive 
information? 

 14 

http://lod-cloud.net/
http://lod-cloud.net/
http://lod-cloud.net/


Motivation 
❖ Dealing with such amount of data makes many tasks hard to 

be solved on single machines 

Source: LOD-Cloud (http://lod-cloud.net/ ) 

Vocabulary 
Reuse 

Find a suitable 
vocabulary for 
your dataset 

 

Coverage 
Analysis 

Does dataset 
contain 

necessary 
information? 

 

Privacy 
Analysis 

Does dataset 
contain 

sensitive 
information? 

 

Entity 
Linking 

Which datasets 
are good 

candidates for 
interlinking?  
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Tasks hard to solve on single machines (>1TB memory 
consumption): 

• Querying and processing LinkedGeoData 
• Dataset statistics and quality assessment of the LOD Cloud 
• Vandalism and outlier detection in Wikidata   
• Inference on life science data (e.g. UniProt, EggNOG, StringDB) 
• Clustering of DBpedia data 
• Clustering of user-logs of the Big Data Europe integrator platform for the 

creation of user profiles  
• Large-scale enrichment and link prediction for e.g. DBpedia → 

LinkedGeoData 

 

Why Distributed RDF Data Processing? 
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SANSA Stack Vision 
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Why combining Big Data and SW? 

“Big Data” Processing (Spark/Flink) Semantic Technology Stack 

Data Integration       Manual pre-processing       Partially automated,   

      standardised 

Modelling       Simple (often flat feature vectors)       Expressive 

Support for data 

exchange 

      Limited (heterogeneous formats  

      with limited schema information) 

      Yes (RDF & OWL W3C  

      Recommendations) 

Business value       Direct       Indirect 

Horizontally 

scalable 

      Yes       No 

Idea: combine advantages of both worlds 
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SANSA Stack 
❖ It’s core is a processing data flow engine that provides data 

distribution, and fault tolerance for distributed computations 
over RDF large-scale datasets 

❖ SANSA includes several libraries for creating applications: 
➢ Read / Write RDF / OWL library 
➢ Querying library 
➢ Inference library 
➢ ML- Machine Learning core library 

http://sansa-stack.net/  
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SANSA Layers 
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SANSA: Read Write Layer 
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SANSA: Read Write Layer 
❖ Ingest RDF and OWL data in different formats using Jena / 

OWL API style interfaces 
❖ Represent data in multiple formats 
➢ (e.g. RDD, Data Frames, GraphX, Tensors)  

❖ Allow transformation among these formats 
❖ Compute dataset statistics and apply functions to URIs, 

literals, subjects, objects → Distributed LODStats 

val triples = spark.rdf(Lang.NTRIPLES)(input) 

triples.find(None, 
Some(NodeFactory.createURI("http://dbpedia.org/ontology/influenced")), None) 

val rdf_stats_prop_dist = triples.statsPropertyUsage() 
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SANSA: Read Write Layer features 

 

 

       

RDF Data 
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SANSA Engine 
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SANSA: OWL Support 
❖ Distributed processing of OWL axioms 
❖ Support for Manchester OWL & functional syntax 
❖ Derived distributed data structures: 
➢ E.g. matrix representation of subclass-of axioms 

to compute its closure via matrix operations 

val rdd =spark.owl(Syntax.MANCHESTER)("file.owl") 
// get all subclass-of axioms 
val sco = rdd.filter(_.isInstanceOf[OWLSubClassOfAxiom]) 
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RDF to Tensors (experimental) 
• Tijk is 1 if triple (i-th entity, k-th predicate, j-th entity) exists 

and 0 otherwise 
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SANSA: Query Layer 
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SANSA: Query Layer 
❖ To make generic queries efficient and fast using: 

➢ Intelligent indexing  
➢ Splitting strategies 
➢ Distributed Storage  

❖ SPARQL query engine evaluation  
➢ (SPARQL-to-SQL approaches, Virtual Views) 

❖ Provision of W3C SPARQL compliant endpoint 

val triples = spark.rdf(Lang.NTRIPLES)(input) 
      

val sparqlQuery = "SELECT * WHERE {?s ?p ?o} LIMIT 10"      

val result = triples.sparql(sparqlQuery) 
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Querying via SPARQL & 
Partitioning 
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Querying via SPARQL & 
Partitioning 
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SANSA-DataLake 

❖ A solution for the virtual Big Data integration: Semantic Data Lake 

➢ Directly query original data without prior 

transformation/loading 

❖ Scalable cross-source query execution (join) 

❖ Extensible (programmatically) 

➢ Do not reinvent the wheel: use existing engine connectors 

(wrappers) 
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SANSA-DataLake 

32 



SANSA-DataLake 

DF2 DF1 DFn 
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Distributed 
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SANSA: Inference Layer 
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SANSA: Inference Layer 
• The volume of semantic data growing rapidly 
• Implicit information needs to be derived by reasoning 

• Reasoning 
 - the process of deducing implicit information from 
existing RDF data by using W3C Standards for Modelling: 
RDFS or OWL fragments 
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SANSA: Inference Layer 
• Reasoning can be performed in two different strategies: 

– The forward chaining strategy derives and stores the 
derived RDF data back into original RDF data storage for 
late queries from applications (data-driven).  

– The backward chaining strategy derives implicit RDF data 
on the fly during query process (goal-directed). 

• The forward chaining strategy has lower query response 
time and high load time. 
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SANSA: Inference Layer 
• Parallel in-memory inference via rule-based forward chaining 
• Beyond state of the art: dynamically build a rule dependency 

graph for a rule set 

→ Adjustable performance 

→ Allows domain-specific customisation 

 

37 



SANSA: Inference Layer 
Parallel RDFS Reasoning Algorithm based on Spark 

Input RDD 

Filtered RDDs 

Input 

Ontology 

Intermediate Join 

results RDD Single Rule 

results 

Rule Set 

results 

... 

Iterate until fixed point iteration 

filter 

filter 

filter 

join 

union 

distinct 
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SANSA: Inference Layer 
Some RDFS inference rules 
• (X R Y), (R subPropertyOf Q) ➞   (X Q Y) 
• (X R Y), (R domain C) ➞  (X type C) 
• (X type C), (C subClassOf D) ➞   (X type D) 

 

40 



SANSA: Inference Layer 

RDFS rule 
dependency graph 
(simplified) 
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SANSA: Inference Layer 
Some OWL Horst Rules: 
• p owl:inverseOf q, v p w ➞ w q v 
• p owl:inverseOf q, v q w ➞ w p v 
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SANSA: Inference Layer 
• Part of OWL Horst rule dependency 

graph (simplified) 

a) p owl:inverseOf q, v p w ➞ w q v 

b) p owl:inverseOf q, v q w ➞ w p v 

p rdfs:subPropertyOf q  

, s p o  ➞ s q o 

p rdf:type owl:SymmetricProperty 

v p u  ➞ u p v 

p rdf:type owl:TranstiveProperty 

v p u  

W p v  

  ➞ u p v 
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SANSA: Inference Layer 
• SANSA-Inference Layer support RDFs and OWL-Horst 

reasoning in Triples and OWLAxioms 

 

• Triple based forward chaining: 
 

   // load triples from disk 

   val graph = RDFGraphLoader.loadFromDisk(spark, input, parallelism) 

   val reasoner = new ForwardRuleReasonerOWLHorst(spark.sparkContext) 

   // compute inferred graph 

   val inferredGraph = reasoner.apply(graph) 
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SANSA: Inference Layer 
• Axiom based forward chaining: 

// load axioms from disk 

var owlAxioms = spark.owl(Syntax.FUNCTIONAL)(input) 

// create reasoner and compute inferred graph 

val inferredGraph = profile match { 

     case RDFS => new ForwardRuleReasonerRDFS(spark.sparkContext, 

parallelism)(owlAxioms) 

     case OWL_HORST => new 

ForwardRuleReasonerOWLHorst(spark.sparkContext, parallelism)(owlAxioms) 

     case _ => throw new RuntimeException("Invalid profile: '" + 

profile + "'") 

} 
46 



SANSA: ML Layer 
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SANSA: ML Layer 
❖ Distributed Machine Learning (ML) algorithms that work on 

RDF data and make use of its structure / semantics 
❖ Algorithms: 
➢ Graph Clustering 

■ Power Iteration,  
■ BorderFlow,  
■ Link based  
■ Modularity based clustering 

➢ Association rule mining (AMIE+ = mining horn rules from RDF 
data using partial completeness assumption and type 
constraints) 

➢ Outlier detection 
➢ KG Kernels 48 



Scope 
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RDF By Modularity Clustering 
• A Hierarchical clustering method 
• Starts with each vertex in its own community 
• Iteratively join pairs of community choosing the one with 

greatest increase in the optimizing function Q 
– Optimization function  identifies the significant community 

structure 

• The cut off point maximal value of Q. 
• Scales as the square of the network size 
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RDFByModularityClusteringAlg(spark.sparkContext, 
numIterations, input, output) 

spark.stop 

 



Power Iteration Clustering 
• Simple and fast version of spectral clustering technique 
• Efficient and scalable in terms of time O(n) and space 
• Applying PowerIteration to the row normalized affinity 

matrix 
• Partitioning clustering algorithm 

– Outputs one-level clustering solution 
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      val lang = Lang.NTRIPLES 
    val triples = spark.rdf(lang)(input) 
    val graph = triples.asStringGraph() 
    val cluster = RDFGraphPowerIterationClustering(spark, graph,   
output, k, maxIterations) 
    cluster.saveAsTextFile(output) 
 
     
 



BorderFlow Clustering 
local graph clustering algorithm 

Designing for directed and undirected weighted graphs 

Clusters in BorderFlow: 

Maximal intra-cluster density 

Minimal outer-cluster density 
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val lang = Lang.NTRIPLES 
val triples = spark.rdf(lang)(input) 
val graph = triples.asGraph() 
 
val borderflow = algName match { 
   case "borderflow" => BorderFlow(spark, graph, output, outputevlsoft, outputevlhard) 
   case "firsthardening" => FirstHardeninginBorderFlow(spark, graph, output, outputevlhard) 
   case _ => 
     throw new RuntimeException("'" + algName + "' - Not supported, yet.") 
 } 



Link Based Clustering 
• Hierarchical link clustering method 
• Bottom up approach of hierarchical called the 

“agglomerative” 
• Clusters are created recursively 
• The similarity S between links can be given by e.g. Jaccard 

similarity 
1.  val lang = Lang.NTRIPLES 
2.  val triples = spark.rdf(lang)(input) 
3.  val graph = triples.asStringGraph() 

4.  AlgSilviaClustering(spark, graph, output, outputeval) 
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DBSCAN Clustering 
• Clustering of POIs on the basis of spatially closed 

coordinates. 
• POIs located in same geolocation are clustered irrespective 

of their categories. 
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1.  val lang = Lang.NTRIPLES 
2.  val triples = spark.rdf(lang)(input) 
3.  val graph = triples.asStringGraph() 

4.  AlgSilviaClustering(spark, graph, output, 

outputeval) 

 



Numerical Outliers Detection 
• Detecting numerical outliers in large RDF dataset. 
• Spark minHashLSH used to create the cohort of similar class. 
•  A scalable approach to find the outliers in a massive dataset.  
•  Numerical outliers detected in the data are useful for 

improving the quality of RDF Data 
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RDF Graph Kernels  
Given an RDF graph constructing a tree for each instance and 
counting the number of paths in it. 

Literals in RDF can only occur as objects in triples and therefore 
have no out-going  edges  in  the  RDF  graph. 

Apply  Term  Frequency-Inverse  Document  Frequency (TF-IDF)  
for vectors. 
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1. val rdfFastGraphKernel = RDFFastGraphKernel(spark, triples, 
"http://swrc.ontoware.org/ontology#affiliation") 

2. val data = rdfFastGraphKernel.getMLLibLabeledPoints 

3. RDFFastTreeGraphKernelUtil.predictLogisticRegressionMLLIB(data, 

4, iteration) 



Rule Mining  
• Association Rule Mining under Incomplete Evidence (AMIE) 
• Atoms : are facts with the subject and object position 

substituted with variables e.g. (isChildOf(?a,?b)) 
• Rules : made up of atoms having a head (one atom) and the 

body (multiple atoms) 
• The body                          predicts the head                         
• A Rule can be written as                                               

 

• OR 
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Interactive SANSA in your Browser 
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BDE & General Integration 
❖ SANSA = Scala / Maven Repositories based on Spark / Flink 
❖ Easy to include both in BDE platform and any Spark / Flink 

environment 
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SANSA Planning and Pulse 
❖ SANSA 0.6 in June 2018, releases every 6 months 
❖ Apache Open Source License 
❖ Project activity: 
➢ Contributors (at least one commit): 17 
➢ Commits per day:  5.9 - Commits previous year: 2175  
➢ Github stars (all repos): 187 
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Conclusions and Next steps 
❖ A generic stack for (big) Linked Data 

➢ Build on top of a state-of-the-art distributed frameworks (Spark, Flink) 

❖ Out-of-the-box framework for scalable and distributed 
semantic data analysis combining semantic web and 
distributed machine learning for (1) querying, (2) inference 
and (3) analytics of RDF datasets. 

❖ Next steps 
➢ Support for SPARQL 1.1 and other partitioning strategies 

(Query Layer) 
➢ Backward chaining and better evaluation (Inference Layer) 
➢ More algorithms and definition of ML pipelines (ML Layer) 
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