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Distributed Big Data Library 
Apache Spark 



Solution? 

❖ New framework: Support the same features of MapReduce 
and many more. 

❖ Capable of reusing Hadoop ecosystem : e.g HDFS, YARN, etc. 

 

 

  

 

        
          

Shortcomings of Mapreduce 

❖ Run programs up to 100x faster than Hadoop MapReduce in 
memory, or 10x faster on disk. 



Apache Spark 



Introduction to Spark 
• Open source 
• Distributed 
• Scalable 
• In-memory 
• General-purpose 

– High level APIs 
• Java 
• Scala 
• Python 
• R 

 

 

– Libraries 
• MLlib 
• Spark SQL 
• GraphX 
• Streaming 



Spark Stack - A unified analytics stack 

Introduction to Spark 

Spark Core Engine 
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http://spark.apache.org/sql/
http://spark.apache.org/streaming/
http://spark.apache.org/mllib/
http://spark.apache.org/graphx/


• Originally developed on UC Berkeley AMPLab in 2009. 
• Open-sourced in 2010. 
• Spark paper came out. 
• Spark Streaming was incorporated in 2011. 
• Transferred to the Apache Software foundation in 2013 
• Spark is a top-level Apache project since 2014 
• Spark 2.0 released with major improvements in 2016 

 

Brief History of Spark 



Data Scientists: 
➢ Analyze and model data. 
➢ Data transformations and prototyping. 
➢ Statistics and Machine Learning. 

 
Software Engineers: 
➢ Data processing systems. 
➢ API for distributed processing dataflow. 
➢ Reliable, high performance and easy to monitor platform. 

Who uses Spark and why? 



Spark: Overview 
• Spark provides  

– parallel distributed processing,  
– fault tolerance  

On commodity hardware, 

• Applications that reuse a working set of data across multiple 
parallel operations e.g.  
– Iterative Machine learning  
– Interactive Data analysis 

• General purpose programming interface 
– Resilient distributed datasets (RDDs)  

 



RDDs - Resilient Distributed Dataset 
• Users can 

– Persist the RDDs in Memory 
– Control partitioning 
– Manipulate using rich set of operations 

• Coarse-grained transformations 
– Map, Filter, Join, applied to many data items concurrently 
– Keeps the lineage 

 



RDDs 
• RDD is represented by a Scala object 
• Created in four ways 

– From a file in a shared file system 
– By “parallelizing” an existing scala collection 
– Transforming an existing RDD 
–  Changing the persistence of an existing RDD 

• Cache (in-memory, spill otherwise) 
• Save (to HDFS) 



RDDs  
• RDDs can only be created through transformations  

– Immutable,  
– no need of checkpointing  
– only lost partitions need to be recomputed 

• Tasks scheduled based on data locality 
• Degrade gracefully by spilling to disk 
• Not suitable to asynchronous updates to shared state 



Parallel Operations on RDDs 
❖ Reduce 
➢ Combines dataset elements using an associative function to 

produce a result at the driver program. 

❖ Collect 
➢ Sends all elements of the dataset to the driver program 

❖ Foreach 
➢ Passes each element through a user provided function 

 



Resilient Distributed Dataset (RDD) 

RDD Value 
Transformations 

Actions 

Creates a DAG, are lazy evaluated and 

has no value 

Performs the transformations and the 

action that follows. It returns the value 

• Spark’s primarily abstraction. 
• Distributed collection of elements, partitioned across the 

cluster. 
– Resilient: recreated, when data in-memory is lost. 
– Distributed: partitioned in-memory across the cluster 
– Dataset: list of collection or data that comes from file. 



Shared Variables 
• Broadcast Variables 

– To Share a large read-only piece of data to be used in multiple 
parallel operations 

• Accumulators:  
– These are variables that workers can only “add” to using an 

associative operation, and that only the driver can read. 

 



Creating RDDs 
• Create some sample data and parallelize by creating and 

RDD 
– val data = 1 to 1000   

– val distData =sc.parallelize(data) 

• Afterwards, you could perform any additional 
transformation or action on top of these RDDs: 
– distData.map { x => ??? } 
– distData.filter { x => ??? } 

• An RDD can be created by external dataset as well:  

  

– val readmeFile = sc.textFile("README.md") 

                



RDD Operations 
Word Count example 

 

 

 

                

val textFile = sparkSession.sparkContext.textFile("hdfs://...") 
val wordCounts = textFile.flatMap(line => line.split(" ")) 
                                 .filter(!_.isEmpty()) 
                                 .map(word => (word, 1)) 
                                 .reduceByKey(_ + _) //(a, b) => a + b 
wordCounts.take(10) 

SparkContext 

HadoopRDD MapPartittionRDD MapPartittionRDD MapPartittionRDD 

ShuffledRDD 

Value 

Directed Acyclic Graph (DAG) for Word Count example 



RDD Operations 
• Transformations: Return new RDDs based on existing 

one (f(RDD) => RDD ), e.g filter, map, reduce, groupBy, 

etc. 

 

 

• Actions: Computes values, e.g count, sum, collect, 

take, etc. 
– Either returned or saved to HDFS 

                

RDD New RDD 

RDD 

Value 



RDD Operations 
• Transformations: Return new RDDs based on existing 

one (f(RDD) => RDD ), e.g filter, map, reduce, groupBy, 

etc. 

 

 

• Actions: Computes values, e.g count, sum, collect, 

take, etc. 
– Either returned or saved to HDFS 

                

RDD New RDD 

RDD 

Value 

Lazy 

Eager 



RDD Transformations (Lazy) 
• map:Apply function to each element in the RDD and return 

an RDD of the result. 
• flatMap Apply a function to each element in the RDD and 

return an RDD of the contents of the iterators returned 
• Filter: Apply predicate function to each element in the RDD 

and return an RDD of elements that have passed the 
predicate condition, pred. 

• distinct:Return RDD with duplicates removed. 



RDD Actions (Eager) 
• TakeSample 
• takeOrdered 
• saveAsTextFile 
• saveAsSequenceFile 



RDD Actions (Eager) 
collect:Return all elements from RDD. 

count: Return the number of elements 

Take(n) Return the first n elements of the RDD. 

reduce:Combine the elements in the RDD together using op 

function and return result. 

foreach:Apply function to each element in the RDD  
   



Transformations on Two RDDs (Lazy) 
• union:Return an RDD containing elements from both RDDs. 
• Intersection: Return an RDD containing elements only found 

in both RDDs 
• Subtract: Return an RDD with the contents of the other RDD 

removed 
• Cartesian: Cartesian product with the other RDD. 

 



RDD Operations 
Expressive and Rich API 

  

  

 

 

                

map  

filter 

groupBy 

sort 

union 

join 

leftOuterJoin 

rightOuterJoin 

reduce  

count  

fold  

reduceByKey 

groupByKey cogroup  

cross  

zip 

sample  

take  

first  

partitionBy mapWith  

pipe  

save  

...  
 



RDD Operations 
Transformations and actions available on RDDs in Spark. 

  

  

 

 

                



Pair RDDs 
• A common form of data processing 
• Main intuition behind the mapreduce 
• Often beneficial to project down the complex data types to 

Key-value pairs 

Distributed key-value pairs 

• Additional specialised methods for working with data 
associated with Keys 

• groupByKey(),reduceByKey(),join  



Pair RDDs 
• Transformations 

– groupByKey 
– reduceByKey 

• Only values of Keys are used for the Grouping 
• More performant 

– mapValues 
• Applies a function to only values in a PairRDD 
• mapValues (def mapValues[U](f: V => U): RDD[(K, U)]) 

– keys 



Pair RDDs 
• Join 

– Inner join, lossy, only returns the values whose keys occur in 
both RDDs 

– leftOuterJoin/rightOuterJoin 

• Actions 
– countByKey 

• Counts the number of elements per key , returns a regular map, 
mapping keys to count 

 



Pair RDDs 
Creation: Mostly from existing non-pair RDDs 

E.g. 

val pairRdd = rdd.map(page => (page.title, page.text)) 

• groupByKey 
• reduceByKey 
• mapValues 
• keys 
• Join 
• left0uterJoin/right0uterJoin 
• countByKey 



Shuffling 
• The shuffle is Spark’s mechanism for re-distributing data so 

that it is grouped differently across partitions.  
• This typically involves copying data across executors and 

machines, making the shuffle a complex and costly 
operation. 

• Certain operations within Spark trigger an event known as 
the shuffle.  

• GroupbyKey can cause shuffling 



Shuffling 
• groupByKey() 

– Shuffles all the keys across network to combine all the keys 

• reduceByKey(func: (V, V) => V): RDD[(K, V)J) 
– Conceptually, reduceByKey can be thought of as a 

combination of first doing groupByKey and then reducing on 
all the values grouped per key. 

– Reduces on the mapper side first 
– Reduce again after shuffling  
– Less data needs to be sent over the network 
– Non trivial gains in performance 



groupByKey and reduceByKey differ in their internal operations 



Dependencies / Shuffling 



Partitioning 
• One partitioning on one machine, or a machine can have 

many, depending on cores 
– Default = number of cores 

• Hash- 
– Hash on key and modulo core size 

• Range 
– keys that can have an ordering 

• Custom Partitioning , based on keys 
• Only on Pair RDDs 



partitionBy 
• Range partition 

– Number of partitions 
– PairRdd with ordered keys 

• Always persist 
• Or data will be shuffled in each iteration 



• Partitioner from Parent RDD 
– The RDD that is the result of a transformation on parent RDD 

usual configured to use the same partitioner as parent 

• Automatically set Partitioners 
– e.g. sortByKey uses RangePartitioner 
– groupByKey uses HashPartitioner 

• Map and Flatmap loose the partitioner as we can change the 
key itself 

• Use mapValues instead !! 

Partitioning using transformations 



Spark application, 
configurations, monitoring and 

tuning 



Spark configurations 
Spark Cluster Overview 

Components 

Driver aka SparkContext 

Cluster Manager ( Standalone, Apache Mesos, Hadoop YARN) 

Executors 



• Web Interfaces 
– WebUI  

• Every SparkContext launches a web UI, on port 4040, that displays useful 
information about the application. 

– Metrics 
• Spark has a configurable metrics system based on the Dropwizard Metrics 

Library. This allows users to report Spark metrics to a variety of sinks including 
HTTP, JMX, and CSV files.  

– Advanced Instrumentation 
• Several external tools can be used to help profile the performance of Spark jobs. 

Spark monitoring 

http://metrics.dropwizard.io/
http://metrics.dropwizard.io/


• Tuning Spark 
– Data Serialization 

• It plays an important role in the performance of any distributed application. 

– Java serialization 
– Kryo serialization 

– Memory Tuning 
• The amount of memory used by your objects (you may want your entire dataset 

to fit in memory), the cost of accessing those objects, and the overhead of 
garbage collection (if you have high turnover in terms of objects).  

– Advanced Instrumentation 
• Several external tools can be used to help profile the performance of Spark jobs. 

Spark tuning 

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
https://github.com/EsotericSoftware/kryo


❖ A unified analytics stack 

Spark Libraries 

Spark Core Engine 
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http://spark.apache.org/sql/
http://spark.apache.org/streaming/
http://spark.apache.org/mllib/
http://spark.apache.org/graphx/


Overview 
• Spark SQL: Relational Data Processing in Spark 
• GraphX: A Resilient Distributed Graph System on Spark 

 

https://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf
http://www.istc-cc.cmu.edu/publications/papers/2013/grades-graphx_with_fonts.pdf


Spark SQL 



Motivation 
• Support relational processing both within Spark programs 
• Provide high performance with established DBMS techniques 
• Easily support new data sources, including semi-structured 

data and external databases amenable to query federation 
• Enable extension with advanced analytics algorithms such as  

graph processing and machine learning 



Motivation 
• Users: 

– Want to perform ETL-relational processing 
• data Frames 

– Analytics - procedural tasks  
•  UDFs 

 



Spark SQL 
• A module that integrates relational processing with Spark’s Functional 

programming API 
• Spark SQL allows relational processing 
• Perform complex analytics 

– Integration between relational and procedural processing through 
declarative Data Frame 

– Optimizer ( catalyst) 
• Composable rules 
• Control code generation 
• Extension points 
• Schema inference for json 
• ML types 
• Query federation 



Spark SQL 
Three main APIs 

• SQL Syntax 
• DataFrames 
• Datasets 

Two specialised backend components 

• Catalyst 
• Tungsten 

 



Data Frame 
• DataFrames are collections of structured records that can be 

manipulated using Spark’s procedural API,  
• Supports relational APIs that allow richer optimizations. 
• Created directly from Spark’s built-in distributed collections 

of Java/Python objects, 
• Enables relational processing in existing Spark Programs 
• DataFrame operations in SparkSQL go through a relational 

optimizer, Catalyst 

 



Catalyst 
• Catalyst is the first production quality query optimizer built 

on such functional language. 
• It contains an extensible query optimizer 
• Catalyst uses features of the Scala programming language,  

– Pattern-matching 
– Express composable rules 
– Turing complete language 



Catalyst 
• Catalyst can also be  

– extended with new data sources,  
– semi-structured data 

• such as JSON  
• “smart” data stores to use push filters 
• e.g., HBase 
• user-defined functions;  
• User-defined types for domains e.g. machine learning. 

• Spark SQL simultaneously makes Spark accessible to more 
users and improves optimizations  



Spark SQL 



DataFrame 
• DataFrame is a distributed collection of rows with the 

“Known” schema like table in a relational database.  
• Each DataFrame can also be viewed as an RDD of Row 

objects, allowing users to call procedural Spark APIs such as 
map. 

• Spark DataFrames are lazy, in that each DataFrame object 
represents a logical plan to compute a dataset, but no 
execution occurs until the user calls a special “output 
operation” such as save 



DataFrame 
• Created from an RDD using .toDF() 
• Reading from a file () 



Example 
• ctx = new HiveContext() 
• users=ctx.table("users") 
• young = users.where(users("age")<21) 
• println(young.count()) 



Data Model 
• DataFrames support all common relational operators, 

including  
– projection (select),  
– filter (where),  
– join, and 
– aggregations (groupBy). 

• Users can break up their code into Scala, Java or Python 
functions that pass DataFrames between them to build a 
logical plan, and will still benefit from optimizations across 
the whole plan when they run an output operation. 



Optimization 
• The  API analyze logical plans eagerly  

– identify whether the column names used in expressions exist 
in the underlying tables, 

– whether the data types are appropriate 

• Spark SQL allows users to construct DataFrames directly 
against RDDs of objects native to the programming language.  

• Spark SQL can automatically infer the schema of these 
objects using reflection 



Spark MlLib 



Spark ML 

Spark Core Engine 

D
e
p

lo
y
 

S
p

a
rk

 S
Q

L
 &

 

D
a

ta
 F

ra
m

e
s

 

C
o
re

 
A

P
Is

 &
 

L
ib

ra
ri
e

s
 

S
p

a
rk

 S
tr

e
a

m
in

g
 

R
e
a
l-

ti
m

e
 p

ro
c
e

s
s

in
g

 

Local 

Single JVM 

Cluster 

(Standalone, Mesos, 

YARN) 

Containers 

docker-

compose 

M
L

li
b

 
M

a
c
h

in
e

 L
e
a

rn
in

g
 

G
ra

p
h

X
 

G
ra

p
h

 

p
ro

c
e

s
s

in
g

 

http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/mllib/
http://spark.apache.org/sql/


Spark ML 
❖MLlib is a standard component of Spark providing machine 

learning primitives on top of Spark 
❖ It provides scalable machine learning, statistics algorithms 
❖ Supports out-of-the-box most popular machine learning 

algorithms like Linear regression, Logistic regression, 
Decision Trees 

❖ Is available in Scala, Java, Python, and R 

 

 

 



ML Algorithms overview 
• Machine learning are separated in two major types of 

algorithms : 
– Supervised - labeled data in which both, input and output are 

provided to the algorithm 
– Unsupervised - do not have the outputs in advance 

 

 

Machine Learning 

Supervised 

● Classification 

○ Naive Bayes 

○ SVM 

○ Random Decision Forests 

● Regression 

○ Linear 

○ Logistic 

Unsupervised 

● Clustering 

○ K-means 

● Dimensionality reduction 

○ singular value decomposition 

(SVD) 

○  principal component analysis 

(PCA) 



Spark ML-pipelines 
• Uniform set of APIs for creating and tuning data 

processing/machine learning pipelines 
• Core concepts: 

– DataFrame: RDD with named columns. SQL-like syntax and 
other core RDD operations 

– Transformer: DataFrame ⇒  DataFrame. Eg., features to 
predictions (classifier) 

– Estimator: DataFrame ⇒  Transformer. e.g., learning algorithm 
– Pipeline: Chain of Transformers and Estimators. Specifies the 

data flow 



Spark ML - pipelines: Transformer 
● A Transformer transforms one DataFrame to another 
● It implements a method transform() 
● Both feature extractors and (un)trained models are 

Transformers, 
because they augment input data with features resp. 
predictions. 

DF Transformer DF 



Spark ML - pipelines: Estimator 
● An Estimator abstraction uses an algorithm which fits a 

model into a DataFrame 
○ Learning algorithms are Estimators 
○ Estimators produce models (models are Transformers) 

● It implements a method fit() 

DF 
Estimator Model 



Spark ML - pipelines: Pipeline 
● Pipeline: is an Estimator 

○ produces a Pipeline-model (a Transformer) 

● consists of Transformers and/or Estimators. 
● When .fit() is called on the Pipeline: 

○ The stages are run in specified order 
○ If stage is Transformer, .transform() is called 
○ If stage is Estimator, .fit() is called 

● pipeline.fit() produces a PipelineModel, where all 
Estimators are replaced by the Transformers they produced 

● ⇒ can easily specify multiple tasks to be trained in a single 
pipeline and used at test time 



Spark ML-pipelines Example 

❖ Split text into words => 
convert numerical features 
=> generate a prediction 
model 

val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words") 
val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol) 
.setOutputCol("features") 
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.01) 
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr)) 
val model = pipeline.fit(training.toDF) 
val test = sc.parallelize(Seq( 
Document(4L, "spark i j k"), 
Document(5L, "l m n"), 
Document(6L, "mapreduce spark"), 
Document(7L, "apache hadoop"))) 
val predictions = model.transform(test.toDF) 

Pipeline 

(Estimator) 
Tokenizer HashingTF 

Logistic 

Regression 

Pipeline.fit() 

Raw text Words Feature vectors 

PipelineModel 

(Transformer) 
Tokenizer HashingTF 

Logistic 

Regression 

Model 



Spark GraphX 



Spark GraphX 
• Graph computation system which runs in the Spark data-

parallel framework. 
• GraphX extends Spark’s Resilient Distributed Dataset (RDD) 

abstraction to introduce the Resilient Distributed Graph 
(RDG) 



• Spark GraphX - stands for graph processing 
– For graph and graph-parallel computation 

• At a high level, GraphX extends the Spark RDD by introducing 
a new Graph abstraction:  
– a directed multigraph with properties attached to each 

vertex and edge.  

• It is based on Property Graph model → G(V, E) 
– Vertex Property 

• Triple details 

– Edge Property 
• Relations 
• Weights 

Spark GraphX 

http://spark.apache.org/docs/latest/api/scala/index.htmlorg.apache.spark.rdd.RDD
http://spark.apache.org/docs/latest/graphx-programming-guide.html#property_graph


Resilient Distributed Graph (RDG) 
❖ A tabular representation of the efficient vertex-cut 

partitioning and data-parallel partitioning heuristics 
❖ Supports implementations of the  
➢ PowerGraph and  
➢ Pregel graph-parallel  

❖ Preliminary performance comparisons between a popular 
data-parallel and graph-parallel frameworks running 
PageRank on a large real-world graph 



Graph Parallel 
• Graph-parallel computation typically adopts a vertex (and 

occasionally edge) centric view of computation 
• Retaining the data-parallel metaphor, program logic in the 

GraphX system defines transformations on graphs with each 
operation yielding a new graph 

• The core data-structure in the GraphX systems is an 
immutable graph 



class Graph[VD, ED] { 
// Information about the Graph  
val numEdges: Long 
val numVertices: Long 
val inDegrees: VertexRDD[Int] 
val outDegrees: VertexRDD[Int] 
val degrees: VertexRDD[Int] 
 
// Views of the graph as collections  
val vertices: VertexRDD[VD] 
val edges: EdgeRDD[ED] 
val triplets: RDD[EdgeTriplet[VD, ED]] 
 
// Functions for caching graphs  
def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED] 
def cache(): Graph[VD, ED] 
def unpersistVertices(blocking: Boolean = true): Graph[VD, ED] 
// Change the partitioning heuristic  
def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED] 
// Transform vertex and edge attributes  
def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED] 
def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2] 
         ---- 
 

 

GraphX operations 



// Basic graph algorithms 
======================================================= 
def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double] 
def connectedComponents(): Graph[VertexId, ED] 
def triangleCount(): Graph[Int, ED] 
def stronglyConnectedComponents(numIter: Int): Graph[VertexId, ED] 
 
 

 

GraphX build-in Graph Algorithms 



Edge-Cut vs Vertex-Cut 





Edge Table 
• EdgeTable(pid, src, dst, data): stores the adjacency structure 

and edge data 
• Each edge is represented as a tuple consisting of the  

– source vertex id,  
– destination vertex id,   
– user-defined data  
– virtual partition identifier (pid). 



Vertex Data Table 
• VertexDataTable(id, data): stores the vertex data, in the form 

of a vertex (id, data) pairs 
• VertexMap(id, pid): provides a mapping from the id of a 

vertex to the ids of the virtual partitions that contain 
adjacent edges 







❖ Creating a Graph 

Spark GraphX - Getting Started 

Vertex RDD 

vID Property(V) 

1L (lehmann, prof) 

2L (jabenn, postdoc) 

3L (sejdiu, phd_student) 

4L (auer, prof) 

Edge RDD 

sID dID Property(E) 

1L 3L advisor 

1L 4L colleague 

2L 1L pi 

3L 2L collab 

type VertexId = Long 
// Create an RDD for the vertices 
val users: RDD[(VertexId, (String, String))]= 
spark.sparkContext.parallelize( 
  Array((3L, ("sejdiu", "phd_student")), 
           (2L, ("jabeen", "postdoc")), 
                             (1L, ("lehmann", "prof")), 
           (4L, ("auer", "prof")))) 
// Create an RDD for edges 
val relationships: RDD[Edge[String]] = 
spark.sparkContext.parallelize( 
  Array(Edge(3L, 2L, "collab"), 
           Edge(1L, 3L, "advisor"), 
           Edge(1L, 4L, "colleague"),  

         Edge(2L, 1L, "pi"))) 
// Build the initial Graph 
val graph = Graph(users, relationships) 

4 
3 

1 

2 
Dr. 

Jabeen 

Prof. 

Lehman 

Sejdiu 

Colleauge 

PI 

Prof. 

Auer 

Adviser 
Collab. 



GraphX Optimizations 
• Mirror Vertices 
• Partial materialization 
• Incremental view 
• Index Scanning for Active Sets 
• Local Vertex and Edge Indices 
• Index and Routing Table Reuse 
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