

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

Distributed Big Data Library
Apache Spark

Solution?

❖ New framework: Support the same features of MapReduce
and many more.

❖ Capable of reusing Hadoop ecosystem : e.g HDFS, YARN, etc.

Shortcomings of Mapreduce

❖ Run programs up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk.

Apache Spark

Introduction to Spark
• Open source
• Distributed
• Scalable
• In-memory
• General-purpose

– High level APIs
• Java
• Scala
• Python
• R

– Libraries
• MLlib
• Spark SQL
• GraphX
• Streaming

Spark Stack - A unified analytics stack

Introduction to Spark

Spark Core Engine

D
e

p
lo

y

S
p

a
rk

 S
Q

L
 &

D
a

ta
 F

ra
m

e
s

C
o
re

A

P
Is

 &

L
ib

ra
ri
e
s

S
p

a
rk

 S
tr

e
a

m
in

g

R
e
a
l-

ti
m

e
 p

ro
c
e
s
s
in

g

Local

Single JVM

Cluster

(Standalone, Mesos,

YARN)

Containers

docker-compose

M
L

li
b

M

a
c
h

in
e

 L
e
a

rn
in

g

G
ra

p
h

X

G
ra

p
h

 p
ro

c
e

s
s

in
g

http://spark.apache.org/sql/
http://spark.apache.org/streaming/
http://spark.apache.org/mllib/
http://spark.apache.org/graphx/

• Originally developed on UC Berkeley AMPLab in 2009.
• Open-sourced in 2010.
• Spark paper came out.
• Spark Streaming was incorporated in 2011.
• Transferred to the Apache Software foundation in 2013
• Spark is a top-level Apache project since 2014
• Spark 2.0 released with major improvements in 2016

Brief History of Spark

Data Scientists:
➢ Analyze and model data.
➢ Data transformations and prototyping.
➢ Statistics and Machine Learning.

Software Engineers:
➢ Data processing systems.
➢ API for distributed processing dataflow.
➢ Reliable, high performance and easy to monitor platform.

Who uses Spark and why?

Spark: Overview
• Spark provides

– parallel distributed processing,
– fault tolerance

On commodity hardware,

• Applications that reuse a working set of data across multiple
parallel operations e.g.
– Iterative Machine learning
– Interactive Data analysis

• General purpose programming interface
– Resilient distributed datasets (RDDs)

RDDs - Resilient Distributed Dataset
• Users can

– Persist the RDDs in Memory
– Control partitioning
– Manipulate using rich set of operations

• Coarse-grained transformations
– Map, Filter, Join, applied to many data items concurrently
– Keeps the lineage

RDDs
• RDD is represented by a Scala object
• Created in four ways

– From a file in a shared file system
– By “parallelizing” an existing scala collection
– Transforming an existing RDD
– Changing the persistence of an existing RDD

• Cache (in-memory, spill otherwise)
• Save (to HDFS)

RDDs
• RDDs can only be created through transformations

– Immutable,
– no need of checkpointing
– only lost partitions need to be recomputed

• Tasks scheduled based on data locality
• Degrade gracefully by spilling to disk
• Not suitable to asynchronous updates to shared state

Parallel Operations on RDDs
❖ Reduce
➢ Combines dataset elements using an associative function to

produce a result at the driver program.

❖ Collect
➢ Sends all elements of the dataset to the driver program

❖ Foreach
➢ Passes each element through a user provided function

Resilient Distributed Dataset (RDD)

RDD Value
Transformations

Actions

Creates a DAG, are lazy evaluated and

has no value

Performs the transformations and the

action that follows. It returns the value

• Spark’s primarily abstraction.
• Distributed collection of elements, partitioned across the

cluster.
– Resilient: recreated, when data in-memory is lost.
– Distributed: partitioned in-memory across the cluster
– Dataset: list of collection or data that comes from file.

Shared Variables
• Broadcast Variables

– To Share a large read-only piece of data to be used in multiple
parallel operations

• Accumulators:
– These are variables that workers can only “add” to using an

associative operation, and that only the driver can read.

Creating RDDs
• Create some sample data and parallelize by creating and

RDD
– val data = 1 to 1000

– val distData =sc.parallelize(data)

• Afterwards, you could perform any additional
transformation or action on top of these RDDs:
– distData.map { x => ??? }
– distData.filter { x => ??? }

• An RDD can be created by external dataset as well:

– val readmeFile = sc.textFile("README.md")

RDD Operations
Word Count example

val textFile = sparkSession.sparkContext.textFile("hdfs://...")
val wordCounts = textFile.flatMap(line => line.split(" "))
 .filter(!_.isEmpty())
 .map(word => (word, 1))
 .reduceByKey(_ + _) //(a, b) => a + b
wordCounts.take(10)

SparkContext

HadoopRDD MapPartittionRDD MapPartittionRDD MapPartittionRDD

ShuffledRDD

Value

Directed Acyclic Graph (DAG) for Word Count example

RDD Operations
• Transformations: Return new RDDs based on existing

one (f(RDD) => RDD), e.g filter, map, reduce, groupBy,

etc.

• Actions: Computes values, e.g count, sum, collect,

take, etc.
– Either returned or saved to HDFS

RDD New RDD

RDD

Value

RDD Operations
• Transformations: Return new RDDs based on existing

one (f(RDD) => RDD), e.g filter, map, reduce, groupBy,

etc.

• Actions: Computes values, e.g count, sum, collect,

take, etc.
– Either returned or saved to HDFS

RDD New RDD

RDD

Value

Lazy

Eager

RDD Transformations (Lazy)
• map:Apply function to each element in the RDD and return

an RDD of the result.
• flatMap Apply a function to each element in the RDD and

return an RDD of the contents of the iterators returned
• Filter: Apply predicate function to each element in the RDD

and return an RDD of elements that have passed the
predicate condition, pred.

• distinct:Return RDD with duplicates removed.

RDD Actions (Eager)
• TakeSample
• takeOrdered
• saveAsTextFile
• saveAsSequenceFile

RDD Actions (Eager)
collect:Return all elements from RDD.

count: Return the number of elements

Take(n) Return the first n elements of the RDD.

reduce:Combine the elements in the RDD together using op

function and return result.

foreach:Apply function to each element in the RDD

Transformations on Two RDDs (Lazy)
• union:Return an RDD containing elements from both RDDs.
• Intersection: Return an RDD containing elements only found

in both RDDs
• Subtract: Return an RDD with the contents of the other RDD

removed
• Cartesian: Cartesian product with the other RDD.

RDD Operations
Expressive and Rich API

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey cogroup

cross

zip

sample

take

first

partitionBy mapWith

pipe

save

...

RDD Operations
Transformations and actions available on RDDs in Spark.

Pair RDDs
• A common form of data processing
• Main intuition behind the mapreduce
• Often beneficial to project down the complex data types to

Key-value pairs

Distributed key-value pairs

• Additional specialised methods for working with data
associated with Keys

• groupByKey(),reduceByKey(),join

Pair RDDs
• Transformations

– groupByKey
– reduceByKey

• Only values of Keys are used for the Grouping
• More performant

– mapValues
• Applies a function to only values in a PairRDD
• mapValues (def mapValues[U](f: V => U): RDD[(K, U)])

– keys

Pair RDDs
• Join

– Inner join, lossy, only returns the values whose keys occur in
both RDDs

– leftOuterJoin/rightOuterJoin

• Actions
– countByKey

• Counts the number of elements per key , returns a regular map,
mapping keys to count

Pair RDDs
Creation: Mostly from existing non-pair RDDs

E.g.

val pairRdd = rdd.map(page => (page.title, page.text))

• groupByKey
• reduceByKey
• mapValues
• keys
• Join
• left0uterJoin/right0uterJoin
• countByKey

Shuffling
• The shuffle is Spark’s mechanism for re-distributing data so

that it is grouped differently across partitions.
• This typically involves copying data across executors and

machines, making the shuffle a complex and costly
operation.

• Certain operations within Spark trigger an event known as
the shuffle.

• GroupbyKey can cause shuffling

Shuffling
• groupByKey()

– Shuffles all the keys across network to combine all the keys

• reduceByKey(func: (V, V) => V): RDD[(K, V)J)
– Conceptually, reduceByKey can be thought of as a

combination of first doing groupByKey and then reducing on
all the values grouped per key.

– Reduces on the mapper side first
– Reduce again after shuffling
– Less data needs to be sent over the network
– Non trivial gains in performance

groupByKey and reduceByKey differ in their internal operations

Dependencies / Shuffling

Partitioning
• One partitioning on one machine, or a machine can have

many, depending on cores
– Default = number of cores

• Hash-
– Hash on key and modulo core size

• Range
– keys that can have an ordering

• Custom Partitioning , based on keys
• Only on Pair RDDs

partitionBy
• Range partition

– Number of partitions
– PairRdd with ordered keys

• Always persist
• Or data will be shuffled in each iteration

• Partitioner from Parent RDD
– The RDD that is the result of a transformation on parent RDD

usual configured to use the same partitioner as parent

• Automatically set Partitioners
– e.g. sortByKey uses RangePartitioner
– groupByKey uses HashPartitioner

• Map and Flatmap loose the partitioner as we can change the
key itself

• Use mapValues instead !!

Partitioning using transformations

Spark application,
configurations, monitoring and

tuning

Spark configurations
Spark Cluster Overview

Components

Driver aka SparkContext

Cluster Manager (Standalone, Apache Mesos, Hadoop YARN)

Executors

• Web Interfaces
– WebUI

• Every SparkContext launches a web UI, on port 4040, that displays useful
information about the application.

– Metrics
• Spark has a configurable metrics system based on the Dropwizard Metrics

Library. This allows users to report Spark metrics to a variety of sinks including
HTTP, JMX, and CSV files.

– Advanced Instrumentation
• Several external tools can be used to help profile the performance of Spark jobs.

Spark monitoring

http://metrics.dropwizard.io/
http://metrics.dropwizard.io/

• Tuning Spark
– Data Serialization

• It plays an important role in the performance of any distributed application.

– Java serialization
– Kryo serialization

– Memory Tuning
• The amount of memory used by your objects (you may want your entire dataset

to fit in memory), the cost of accessing those objects, and the overhead of
garbage collection (if you have high turnover in terms of objects).

– Advanced Instrumentation
• Several external tools can be used to help profile the performance of Spark jobs.

Spark tuning

http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
https://github.com/EsotericSoftware/kryo

❖ A unified analytics stack

Spark Libraries

Spark Core Engine

D
e
p

l

o
y

S
p

a
rk

 S
Q

L
 &

D
a

ta
 F

ra
m

e
s

C
o
re

A

P
Is

 &

L
ib

ra
ri
e
s

S
p

a
rk

 S
tr

e
a

m
in

g

R
e
a
l-

ti
m

e
 p

ro
c
e
s
s
in

g

Local

Single JVM

Cluster

(Standalone, Mesos,

YARN)

Containers

docker-compose

M
L

li
b

M

a
c
h

in
e

 L
e
a

rn
in

g

G
ra

p
h

X

G
ra

p
h

 p
ro

c
e

s
s

in
g

http://spark.apache.org/sql/
http://spark.apache.org/streaming/
http://spark.apache.org/mllib/
http://spark.apache.org/graphx/

Overview
• Spark SQL: Relational Data Processing in Spark
• GraphX: A Resilient Distributed Graph System on Spark

https://people.csail.mit.edu/matei/papers/2015/sigmod_spark_sql.pdf
http://www.istc-cc.cmu.edu/publications/papers/2013/grades-graphx_with_fonts.pdf

Spark SQL

Motivation
• Support relational processing both within Spark programs
• Provide high performance with established DBMS techniques
• Easily support new data sources, including semi-structured

data and external databases amenable to query federation
• Enable extension with advanced analytics algorithms such as

graph processing and machine learning

Motivation
• Users:

– Want to perform ETL-relational processing
• data Frames

– Analytics - procedural tasks
• UDFs

Spark SQL
• A module that integrates relational processing with Spark’s Functional

programming API
• Spark SQL allows relational processing
• Perform complex analytics

– Integration between relational and procedural processing through
declarative Data Frame

– Optimizer (catalyst)
• Composable rules
• Control code generation
• Extension points
• Schema inference for json
• ML types
• Query federation

Spark SQL
Three main APIs

• SQL Syntax
• DataFrames
• Datasets

Two specialised backend components

• Catalyst
• Tungsten

Data Frame
• DataFrames are collections of structured records that can be

manipulated using Spark’s procedural API,
• Supports relational APIs that allow richer optimizations.
• Created directly from Spark’s built-in distributed collections

of Java/Python objects,
• Enables relational processing in existing Spark Programs
• DataFrame operations in SparkSQL go through a relational

optimizer, Catalyst

Catalyst
• Catalyst is the first production quality query optimizer built

on such functional language.
• It contains an extensible query optimizer
• Catalyst uses features of the Scala programming language,

– Pattern-matching
– Express composable rules
– Turing complete language

Catalyst
• Catalyst can also be

– extended with new data sources,
– semi-structured data

• such as JSON
• “smart” data stores to use push filters
• e.g., HBase
• user-defined functions;
• User-defined types for domains e.g. machine learning.

• Spark SQL simultaneously makes Spark accessible to more
users and improves optimizations

Spark SQL

DataFrame
• DataFrame is a distributed collection of rows with the

“Known” schema like table in a relational database.
• Each DataFrame can also be viewed as an RDD of Row

objects, allowing users to call procedural Spark APIs such as
map.

• Spark DataFrames are lazy, in that each DataFrame object
represents a logical plan to compute a dataset, but no
execution occurs until the user calls a special “output
operation” such as save

DataFrame
• Created from an RDD using .toDF()
• Reading from a file ()

Example
• ctx = new HiveContext()
• users=ctx.table("users")
• young = users.where(users("age")<21)
• println(young.count())

Data Model
• DataFrames support all common relational operators,

including
– projection (select),
– filter (where),
– join, and
– aggregations (groupBy).

• Users can break up their code into Scala, Java or Python
functions that pass DataFrames between them to build a
logical plan, and will still benefit from optimizations across
the whole plan when they run an output operation.

Optimization
• The API analyze logical plans eagerly

– identify whether the column names used in expressions exist
in the underlying tables,

– whether the data types are appropriate

• Spark SQL allows users to construct DataFrames directly
against RDDs of objects native to the programming language.

• Spark SQL can automatically infer the schema of these
objects using reflection

Spark MlLib

Spark ML

Spark Core Engine

D
e
p

lo
y

S
p

a
rk

 S
Q

L
 &

D
a

ta
 F

ra
m

e
s

C
o
re

A

P
Is

 &

L
ib

ra
ri
e

s

S
p

a
rk

 S
tr

e
a

m
in

g

R
e
a
l-

ti
m

e
 p

ro
c
e

s
s

in
g

Local

Single JVM

Cluster

(Standalone, Mesos,

YARN)

Containers

docker-

compose

M
L

li
b

M

a
c
h

in
e

 L
e
a

rn
in

g

G
ra

p
h

X

G
ra

p
h

p
ro

c
e

s
s

in
g

http://spark.apache.org/sql/
http://spark.apache.org/sql/
http://spark.apache.org/mllib/
http://spark.apache.org/sql/

Spark ML
❖MLlib is a standard component of Spark providing machine

learning primitives on top of Spark
❖ It provides scalable machine learning, statistics algorithms
❖ Supports out-of-the-box most popular machine learning

algorithms like Linear regression, Logistic regression,
Decision Trees

❖ Is available in Scala, Java, Python, and R

ML Algorithms overview
• Machine learning are separated in two major types of

algorithms :
– Supervised - labeled data in which both, input and output are

provided to the algorithm
– Unsupervised - do not have the outputs in advance

Machine Learning

Supervised

● Classification

○ Naive Bayes

○ SVM

○ Random Decision Forests

● Regression

○ Linear

○ Logistic

Unsupervised

● Clustering

○ K-means

● Dimensionality reduction

○ singular value decomposition

(SVD)

○ principal component analysis

(PCA)

Spark ML-pipelines
• Uniform set of APIs for creating and tuning data

processing/machine learning pipelines
• Core concepts:

– DataFrame: RDD with named columns. SQL-like syntax and
other core RDD operations

– Transformer: DataFrame ⇒ DataFrame. Eg., features to
predictions (classifier)

– Estimator: DataFrame ⇒ Transformer. e.g., learning algorithm
– Pipeline: Chain of Transformers and Estimators. Specifies the

data flow

Spark ML - pipelines: Transformer
● A Transformer transforms one DataFrame to another
● It implements a method transform()
● Both feature extractors and (un)trained models are

Transformers,
because they augment input data with features resp.
predictions.

DF Transformer DF

Spark ML - pipelines: Estimator
● An Estimator abstraction uses an algorithm which fits a

model into a DataFrame
○ Learning algorithms are Estimators
○ Estimators produce models (models are Transformers)

● It implements a method fit()

DF
Estimator Model

Spark ML - pipelines: Pipeline
● Pipeline: is an Estimator

○ produces a Pipeline-model (a Transformer)

● consists of Transformers and/or Estimators.
● When .fit() is called on the Pipeline:

○ The stages are run in specified order
○ If stage is Transformer, .transform() is called
○ If stage is Estimator, .fit() is called

● pipeline.fit() produces a PipelineModel, where all
Estimators are replaced by the Transformers they produced

● ⇒ can easily specify multiple tasks to be trained in a single
pipeline and used at test time

Spark ML-pipelines Example

❖ Split text into words =>
convert numerical features
=> generate a prediction
model

val tokenizer = new Tokenizer().setInputCol("text").setOutputCol("words")
val hashingTF = new HashingTF().setNumFeatures(1000).setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")
val lr = new LogisticRegression().setMaxIter(10).setRegParam(0.01)
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr))
val model = pipeline.fit(training.toDF)
val test = sc.parallelize(Seq(
Document(4L, "spark i j k"),
Document(5L, "l m n"),
Document(6L, "mapreduce spark"),
Document(7L, "apache hadoop")))
val predictions = model.transform(test.toDF)

Pipeline

(Estimator)
Tokenizer HashingTF

Logistic

Regression

Pipeline.fit()

Raw text Words Feature vectors

PipelineModel

(Transformer)
Tokenizer HashingTF

Logistic

Regression

Model

Spark GraphX

Spark GraphX
• Graph computation system which runs in the Spark data-

parallel framework.
• GraphX extends Spark’s Resilient Distributed Dataset (RDD)

abstraction to introduce the Resilient Distributed Graph
(RDG)

• Spark GraphX - stands for graph processing
– For graph and graph-parallel computation

• At a high level, GraphX extends the Spark RDD by introducing
a new Graph abstraction:
– a directed multigraph with properties attached to each

vertex and edge.

• It is based on Property Graph model → G(V, E)
– Vertex Property

• Triple details

– Edge Property
• Relations
• Weights

Spark GraphX

http://spark.apache.org/docs/latest/api/scala/index.htmlorg.apache.spark.rdd.RDD
http://spark.apache.org/docs/latest/graphx-programming-guide.html#property_graph

Resilient Distributed Graph (RDG)
❖ A tabular representation of the efficient vertex-cut

partitioning and data-parallel partitioning heuristics
❖ Supports implementations of the
➢ PowerGraph and
➢ Pregel graph-parallel

❖ Preliminary performance comparisons between a popular
data-parallel and graph-parallel frameworks running
PageRank on a large real-world graph

Graph Parallel
• Graph-parallel computation typically adopts a vertex (and

occasionally edge) centric view of computation
• Retaining the data-parallel metaphor, program logic in the

GraphX system defines transformations on graphs with each
operation yielding a new graph

• The core data-structure in the GraphX systems is an
immutable graph

class Graph[VD, ED] {
// Information about the Graph
val numEdges: Long
val numVertices: Long
val inDegrees: VertexRDD[Int]
val outDegrees: VertexRDD[Int]
val degrees: VertexRDD[Int]

// Views of the graph as collections
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
val triplets: RDD[EdgeTriplet[VD, ED]]

// Functions for caching graphs
def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED]
def cache(): Graph[VD, ED]
def unpersistVertices(blocking: Boolean = true): Graph[VD, ED]
// Change the partitioning heuristic
def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED]
// Transform vertex and edge attributes
def mapVertices[VD2](map: (VertexId, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]

GraphX operations

// Basic graph algorithms
===
def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double]
def connectedComponents(): Graph[VertexId, ED]
def triangleCount(): Graph[Int, ED]
def stronglyConnectedComponents(numIter: Int): Graph[VertexId, ED]

GraphX build-in Graph Algorithms

Edge-Cut vs Vertex-Cut

Edge Table
• EdgeTable(pid, src, dst, data): stores the adjacency structure

and edge data
• Each edge is represented as a tuple consisting of the

– source vertex id,
– destination vertex id,
– user-defined data
– virtual partition identifier (pid).

Vertex Data Table
• VertexDataTable(id, data): stores the vertex data, in the form

of a vertex (id, data) pairs
• VertexMap(id, pid): provides a mapping from the id of a

vertex to the ids of the virtual partitions that contain
adjacent edges

❖ Creating a Graph

Spark GraphX - Getting Started

Vertex RDD

vID Property(V)

1L (lehmann, prof)

2L (jabenn, postdoc)

3L (sejdiu, phd_student)

4L (auer, prof)

Edge RDD

sID dID Property(E)

1L 3L advisor

1L 4L colleague

2L 1L pi

3L 2L collab

type VertexId = Long
// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))]=
spark.sparkContext.parallelize(
 Array((3L, ("sejdiu", "phd_student")),
 (2L, ("jabeen", "postdoc")),
 (1L, ("lehmann", "prof")),
 (4L, ("auer", "prof"))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
spark.sparkContext.parallelize(
 Array(Edge(3L, 2L, "collab"),
 Edge(1L, 3L, "advisor"),
 Edge(1L, 4L, "colleague"),

 Edge(2L, 1L, "pi")))
// Build the initial Graph
val graph = Graph(users, relationships)

4
3

1

2
Dr.

Jabeen

Prof.

Lehman

Sejdiu

Colleauge

PI

Prof.

Auer

Adviser
Collab.

GraphX Optimizations
• Mirror Vertices
• Partial materialization
• Incremental view
• Index Scanning for Active Sets
• Local Vertex and Edge Indices
• Index and Routing Table Reuse

References
1. “Spark Programming Guide” - http://spark.apache.org/docs/latest/programming-guide.html

2. “Spark Streaming Programming Guide”- http://spark.apache.org/docs/latest/streaming-programming-

guide.html

3. “Spark Cluster Overview” - http://spark.apache.org/docs/latest/cluster-overview.html

4. “Spark Configuration” - http://spark.apache.org/docs/latest/configuration.html

5. “Spark Monitoring” - http://spark.apache.org/docs/latest/monitoring.html

6. “Spark tuning” - http://spark.apache.org/docs/latest/tuning.html

7. MLlib: Machine Learning in Apache Spark by Meng et al. in Journal of Machine Learning Research

17, 2016.

8. “Machine Learning Library (MLlib) Guide” - http://spark.apache.org/docs/latest/ml-guide.html

9. Spark SQL: Relational Data Processing in Spark by Armbrust et al. in SIGMOD Conference, 2015.

10. “Spark SQL, DataFrames and Datasets Guide” - http://spark.apache.org/docs/latest/sql-programming-

guide.html

11. GraphX: Graph Processing in a Distributed Dataflow Framework by Gonzalez et al. in OSDI, 2014.

12. “GraphX Programming Guide” - http://spark.apache.org/docs/latest/graphx-programming-guide.html

http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/configuration.html
http://spark.apache.org/docs/latest/monitoring.html
http://spark.apache.org/docs/latest/tuning.html
http://www.jmlr.org/papers/volume17/15-237/15-237.pdf
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
https://amplab.cs.berkeley.edu/wp-content/uploads/2015/03/SparkSQLSigmod2015.pdf
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
https://amplab.cs.berkeley.edu/wp-content/uploads/2014/09/graphx.pdf
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

THANK YOU !

 Dr. Damien Graux Dr. Hajira Jabeen
 jabeen@cs.uni-bonn.de damien.graux@iais.fraunhofer.de

mailto:jabeen@cs.uni-bonn.de
mailto:jabeen@cs.uni-bonn.de
mailto:jabeen@cs.uni-bonn.de
mailto:damien.graux@iais.fraunhofer.de

