

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

Distributed Big Data Frameworks
A Panorama

2

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

THANK YOU !

Database Paradigms

• Relational (RDBMS) — The SQL world…!

Database Paradigms

• ACID set of properties i.e. atomicity, consistency, isolation
and durability.

• SQL is the canonical query language

• MySQL, PostgreSQL, Oracle, …

Relational (a quick reminder)

Relational (a quick reminder)

https://en.wikipedia.org/wiki/Relational_database#/media/File:RDBMS_structure.png

https://en.wikipedia.org/wiki/Relational_database/media/File:RDBMS_structure.png

• Relational (RDBMS) — The SQL world…!

• NoSQL
– Key-Value stores

Database Paradigms

• Paradigm → One key = One value
– Without duplicate
– Usually sorted

• Key is like a hash
• Value is seen as a binary object

• Examples:
– Amazon Dynamo
– MemcacheDB
– Apache Accumulo

Key-Value stores

Key-Value stores

• Relational (RDBMS) — The SQL world…!

• NoSQL
– Key-Value stores
– Document databases

Database Paradigms

• Key-Value store, but the value is structured and understood
by the DB.

• Querying data is possible (by other means than just a key).

• Examples:
– Amazon SimpleDB
– CouchDB
– Riak
– MongoDB

Document databases

Document databases

• Relational (RDBMS) — The SQL world…!

• NoSQL
– Key-Value stores
– Document databases
– Wide Column stores (e.g. BigTable and its variations)

Database Paradigms

• Often referred as BigTables systems

• “Sparse, distributed mutli-dimensional sorted map”

• Examples:
– Google BigTable
– Cassandra (Facebook)
– HBase

Wide Column stores

Wide Column stores

https://database.guide/wp-content/uploads/2016/06/wide_column_store_database_example_row-1.png

https://database.guide/wp-content/uploads/2016/06/wide_column_store_database_example_row-1.png
https://database.guide/wp-content/uploads/2016/06/wide_column_store_database_example_row-1.png
https://database.guide/wp-content/uploads/2016/06/wide_column_store_database_example_row-1.png
https://database.guide/wp-content/uploads/2016/06/wide_column_store_database_example_row-1.png
https://database.guide/wp-content/uploads/2016/06/wide_column_store_database_example_row-1.png

• Relational (RDBMS) — The SQL world…!

• NoSQL
– Key-Value stores
– Document databases
– Wide Column stores (e.g. BigTable and its variations)
– Graph databases

• Other ones…

Database Paradigms

• Multi-relational graph

• Put emphasis on links between data pieces

• Examples:
– Neo4j
– InfoGrid
– Triplestores…

Graph databases

Graph databases

https://neo4j.com/blog/graph-of-thrones/

https://neo4j.com/blog/graph-of-thrones/
https://neo4j.com/blog/graph-of-thrones/
https://neo4j.com/blog/graph-of-thrones/
https://neo4j.com/blog/graph-of-thrones/
https://neo4j.com/blog/graph-of-thrones/

Database Paradigms (Visually)

https://www.guru99.com/nosql-tutorial.html

https://www.guru99.com/nosql-tutorial.html
https://www.guru99.com/nosql-tutorial.html
https://www.guru99.com/nosql-tutorial.html

Selected Storage Systems

• Document database (NoSQL)
– scalability and flexibility
– querying and indexing

• Stores data in
– JSON-like documents
– schema free database

• Open-Source

MongoDB

• RDBMS replacement for Web Applications
• Semi-structured Content Management
• Real-time Analytics & High-Speed Logging
• Caching and Scalability

What is MongoDB great for?

Apache Hive
• Apache Hive is a data warehouse

– Developed by Facebook
– On top of Apache Hadoop

• Provides
– Data summarization
– Query
– Analysis

• Open-Source
• Gives an SQL-like interface

Apache Hive - Some Facts

https://www.slideshare.net/MahmoodRezaEsmailiZa/apache-hive-
introduction

https://www.slideshare.net/MahmoodRezaEsmailiZa/apache-hive-introduction
https://www.slideshare.net/MahmoodRezaEsmailiZa/apache-hive-introduction
https://www.slideshare.net/MahmoodRezaEsmailiZa/apache-hive-introduction
https://www.slideshare.net/MahmoodRezaEsmailiZa/apache-hive-introduction
https://www.slideshare.net/MahmoodRezaEsmailiZa/apache-hive-introduction

Apache Hive - Limitations
• Not design for online transaction processing
• Not suited for real-time queries
• Not made for low-latency query
• Certain standard SQL functions do not exist

– NOT IN
– NOT LIKE
– NOT EQUAL

Apache Cassandra
• Facebook inbox search feature
• millisecond read and write times
• Designed for linear, incremental scalability on top of

commodity hardware.
• Open-Source since 2008

Cassandra - Strenghts
• Linear scale performance when adding node
• Peer-to-peer architecture instead of master-slave
• Fault tolerant in case of node failure
• High performance
• Schema-free/Schema-less

Cassandra - Limitations
Use cases where it is better to avoid using Cassandra

• If there are too many joins required
• To store configuration data
• During compaction, things slow down
• Aggregation Operator support is limited
• Can update or delete data but not designed for

Distributed Stream Processing

Apache Kafka
• Distributed event streaming platform
• Able to handle up to trillions of events a day
• Initially conceived as a messaging queue
• Open-sourced by LinkedIn in 2011
• Useful for:

– Stream processing
– Website activity tracking
– Metrics collection and monitoring
– Log aggregation

Apache Kafka
Three key capabilities

• Publish and Subscribe
– Stream of records

• Process
– Streams of records as they occur

• Store
– Streams of records in fault tolerant manner

Search, Indexing, visualization

ElasticSearch
• Distributed and highly available search engine

– Indexes are sharded (replicas)
– read/search on any replica shards

• Multi-tenant
– Support for more than one index

• Various set of APIs
• Document oriented
• Reliable
• Near real time search

ElasticSearch
• Data into ElasticSearch

– Receive data in form of JSON documents
– Ingest data using Logstash
– Connectors to other data stores

• Stores and add searchable reference to the document
• All data is indexed by default
• Every field has a dedicated inverted index
• All of inverted indexes can be used in a query

Visualization

Kibana
• Browser-based analytics and search dashboard for

Elasticsearch
– search
– view
– interact

with the data stored in Elasticsearch indices

• Visualize data
– Charts
– Tables
– Maps

Kibana
• Display changes in real time
• Discover

– Explore data using selected index patterns

• Visualize
– Create visualizations of data based on

• ElasticSearch queries, Search saved from Discover

– Stored as dashboards

• Dashboard
– collection of visualizations and searches

Processing Frameworks

Analytic Frameworks

40

• Batch-only
– Apache Hadoop MapReduce

• Stream and In-Memory Computing
– Apache Spark
– Apache Flink

• Distributed framework to process vast amounts of data
(multi-terabyte data-sets)
– Cluster of commodity hardware
– Reliable
– Fault tolerant

• MapReduce job
– Divides the large data into independent chunks
– Processed by Map-tasks in parallel
– Sorted output is passed to the reduce-tasks
– Typically both input and output are stored in filesystem (HDFS)

Hadoop MapReduce

MapReduce Engine

42 https://www.dummies.com/wp-content/uploads/473708.image0.jpg

https://www.dummies.com/wp-content/uploads/473708.image0.jpg
https://www.dummies.com/wp-content/uploads/473708.image0.jpg
https://www.dummies.com/wp-content/uploads/473708.image0.jpg

Map reduce
• First popular data flow model
• In the Map-Reduce model, the user provides two functions

(map and reduce)
– Map() must output key-value pairs
– Input to the reduce is partitioned by key across machines

(shuffled)
– reduce() output the aggregated values

Processing of Map tasks

• Given a file divided into multiple parts (splits).
• Each record (line) is processed by a Map function,

– written by the user,
– takes an input key/value pair
– produces a set of intermediate key/value pairs.
– e.g. (doc—id, doc-content)

• Draws an analogy to SQL group-by clause

44

Processing of Reduce Tasks

 Given a set of (key, value) records by map tasks

− The intermediate values are combined into a list based on

keys and given to a reducer.

− Each reducer further performs an aggregate function

(e.g., average) computed over all the rows with the same

“key”

●

●

Visualizing map and reduce tasks

https://cdn.intellipaat.com/mediaFiles/2015/07/hadoop-mapreduce1.jpg.png

https://cdn.intellipaat.com/mediaFiles/2015/07/hadoop-mapreduce1.jpg.png
https://cdn.intellipaat.com/mediaFiles/2015/07/hadoop-mapreduce1.jpg.png
https://cdn.intellipaat.com/mediaFiles/2015/07/hadoop-mapreduce1.jpg.png

 Example: Word counting in class
”Consider the problem of counting the number of occurrences of
each word in a large collection of documents”

 Distribute

Divide a collection of

documents among the class

.

Each person calculates

counts of individual words

in the documents

independent

Map

Gather the words and

counts

Shuffle

Sum up the counts from all

the documents for all the

words

Reduce

Word Count MapReduce

https://dzone.com/storage/temp/1329325-111.png

https://dzone.com/storage/temp/1329325-111.png
https://dzone.com/storage/temp/1329325-111.png
https://dzone.com/storage/temp/1329325-111.png

Drawbacks of MapReduce
• Forces data analysis workflow into a map and a reduce phase

– You might need
• Join
• Filter
• Sample

– Complex workflows that do not fit into map/Reduce
– Mapreduce relies on reading data from disk

• Performance bottleneck
• Especially for iterative algorithms
• e.g. Machine Learning

Requirement . .
• A tool, compatible with the existing environment
• Without replacing the stack

– replace map-reduce only

• Generic
– Provides a rich API, more functions

• Reduces Disk I/O
– Faster
– In-memory computations

• Provides an interactive shell

Apache Flink
• Distributed stream processing engine
• Process bounded and unbounded streams
• Generic deployment
• Scalable

– Trillions of events
– Terabytes of states
– Thousands of cores

• In-Memory performance

Apache Flink APIs
• Data Stream API

– bounded or unbounded streams of data

• Dataset API
– bounded data sets
– Transformations (Filter, map, join)

• Table API
– SQL-like expression language for relational stream

Apache Flink Layered APIs

Apache Flink Libraries
• Complex Event Processing (CEP)

– Pattern detection from events

• DataSet API
– Map, Reduce, join, iterate

• Gelly
– Scalable Graph processing library

References
https://flink.apache.org/

https://flink.apache.org/

This project has received funding from the European Union's Horizon 2020 Research and Innovation

programme under grant agreement No 809965.

THANK YOU !

 Dr. Damien Graux Dr. Hajira Jabeen
 jabeen@cs.uni-bonn.de damien.graux@iais.fraunhofer.de

mailto:jabeen@cs.uni-bonn.de
mailto:jabeen@cs.uni-bonn.de
mailto:jabeen@cs.uni-bonn.de
mailto:damien.graux@iais.fraunhofer.de

