A State-of-the-art Review on Big Data Technologies

Semantic technologies for Big Data: Volume, Velocity, Variety and Veracity @ ICIST 2019

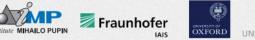
Marko Jelić, BSc EE & CS

Junior researcher, The Mihajlo Pupin Institute

Dea Pujić, *BSc EE & CS Junior researcher, The Mihajlo Pupin Institute*

Hajira Jabeen, *PhD* Senior researcher, Computer Science Institute, University of Bonn

Acknowledgment/Context



Learning, Applying, Multiplying

Big Data Analytics

Institute Mihajlo Pupin Serbia Fraunhofer Institute for Intelligent Analysis and Information Systems Germany Institute for Computer Science, University of Bonn Germany Department of Computer Science, University of Oxford UK

- LAMBDA¹ (Learning, Applying, Multiplying, Big Data Analytics) is a twinning² H2020 project
- The main goal of the project is to provide different knowledge transfer instruments (mentorships, brainstorming sessions, school type activities) and different types of twinning relationships (institution to institution, institution to network)

The specific focus of the knowledge transfer process is placed on the Big data domain and corresponding technologies and services

¹ https://project-lambda.org/

² https://ec.europa.eu/neighbourhood-enlargement/tenders/twinning_en

What is Big data?

Big data is used more as a buzzword then a precisely defined scientific object or phenomena

- Generally used when referring to data loads that the modern-day IT infrastructure cannot cope with at all or in an efficient manner
- More precisely, Big data is usually used when referring to data sets that are sized in the order of magnitude of exabytes (10¹⁸ B) or greater
- The introduction of US social security in 1937 is considered by some as the start of the Big data era but this term has gained most of its popularity just recently following the development of data heavy applications

- Big data is often characterized trough so-called V's of Big data that capture its complex nature
 - Volume amount of data that has to be captured, stored, processed and displayed
 - Velocity the rate at which the data is being generated, or analyzed
 - Variety differences in data structure (format) or differences in data sources themselves

Veracity – truthfulness (uncertainty) of data							
Validity – suitability of the selected dataset for a given application							
Volatility – temporal validity and fluency of the data	5V's						
Value – (useful) information extracted from the data							
Visualization – properly displaying and showcasing information	7V's						
Vulnerability – security and privacy concerns associated							

Variability – the changing meaning of data

10V's

211/2

Big data challenges

The core technological challenges working with Big data that stem from its complex nature are:

- Heterogeneity differences in structure
- Uncertainty data reliability
- Scalability sizing the workflow and infrastructure
- Timeliness real-time requirements
- Fault tolerance sensitivity to errors
- Data security privacy issues, data leaks
- Visualization displaying of information

	Storing	Processing	Analytics	Visualization
Heterogeneity	+	+		
Uncertainty of data		+	+	
Scalability	+	+	+	
Timeliness	+	+	+	
Fault tolerance		+	+	
Data security	+	+		
Visualization				+

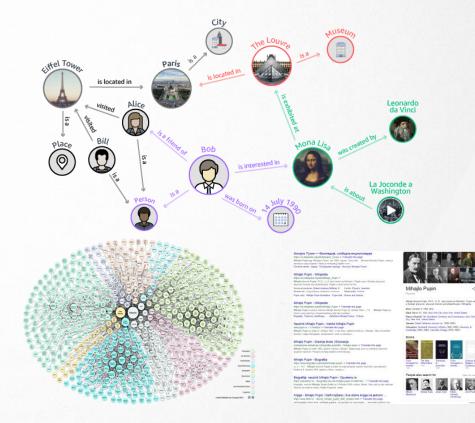
* Illustrations by https://aws.amazon.com/neptune/ and https://lod-cloud.net/versions/2014-08-30/lod-cloud.svg

Big data Storage

No-SQL (not only SQL) databases

- Key-value stores
 - Hazelcast
 - Redis
 - Membrane/Cocuhbase
 - Riak
 - Voldemort
 - Infinispan
- Wide-column
 - Apache Hbase
 - Hypertable
 - Apache Cassandra

cassandra


Couchbase

- Document oriented
 - MongoDB
 - Apache CouchDB
 - Terrastore
 - RavenDB
 - Graph oriented
 - Neo4J
 - Infinite-Graph
 - InfoGrid
 - HypergraphDB
 - AllegroGrap
 - BigData

mongoDB

Knowledge graphs

institut MIHAJLO PUPIN

Processing the data and applying inference (i.e. trough machine learning) on Big data is key for proper knowledge (value) extraction

	linear regression	logistic regression	SVM	naive Bayes	discriminant analysis	survival regression	isotonic regression	decision trees	random forest	gradient boosting tree	isolation forest	bagging CART	C4.5	generalized linear model	ensembles	XGboost	NN	kNN	drift classifier	model-fitting
Apache Spark	+	+	+	+		+	+	+	+	+							+			
H2O				+					+	+	+			+	+	+	+			
R		+	+	+	+			+	+	+		+	+				+	+		
MOA				+				+									+		+	
Scikit - Learn	+	+	+	+	+		+	+	+	+	+			+	+		+	+		+
Bigml	+				+			+	+	+	+						+			
Weka	+	+	+	+					+				+							

Systematization of **regression and classification** learning algorithms in Big data tools

If the data is not already labeled i.e. separated into appropriate classes, clustering algorithms need to be applied first in order to determine adequate class limits

Systematization of clustering learning algorithms in Big data tools

Big data visualization

- JavaScript libraries (open source)
 - Chart.js
 - Leaflet
 - Chartist.js
 - n3-charts
 - Sigma JS
 - Polymaps
 - Processing.js
 - Dyagraph

Timelines

Timeline JS

- Chart tools
 - Fusion Charts
 - Chart.js
 - Chartist.js
 - n3-charts
 - Canvas
- Map tools
 - Leaflet
 - Polymaps
- Images
 - Processing.js

- Graphs and networks
 - Sigma JS
- Multi-purpose
 - D3.js
 - Ember-charts
 - Google charts
- Non-web
 - Cuttlefish
 - Cytoscape
 - Gephi
 - Graphwiz
 - Graph-tool

- Cross-platform
 - NodeXL
 - Pajek
 - SocNetV
 - Sentinel Visualizer
 - Statnet
 - Tulip
 - Visone
- Commertial (desktop)
 - Tableau
 - Infogram

Thank you for your attention!

Look for the full paper "A State-of-the-art Review on Big Data Technologies" in the ICIST 2019 proceedings after April 15th!